Behavior of Concrete-Filled Single and Double-Skin uPVC Tubular Columns Under Axial Compression Loads

Author:

Woldemariam Abraham M.,Oyawa Walter O.,Nyomboi Timothy

Abstract

Background: There is an increased demand for high-performance materials in the construction industry due to the high cost, the difficulty of sourcing and shortcomings of the existing construction materials. Some of the deficiencies are corrosion of steel, brittle failure and rapid deterioration of reinforced concrete structures in a harsh environment. Nowadays, there is also a move from one material to another due to the difficulty of sourcing i.e. timber electric poles to concrete poles due to the difficulty of sourcing native hardwood. These situations have triggered the interest to develop an alternative structural system. Objective: This paper presents the behavior of unconfined concrete, Concrete-Filled Single Skin uPVC Tubular (CFSUT) and concrete-filled double skin uPVC tubular (CFDUT) members under axial compression loads. Method: The unconfined concrete cylinders, CFSUT and CFDUT specimens were prepared from a concrete class of C25 and tested using a UTM machine at a rate of 0.2MPa/s. The parameters considered where thickness to diameter ratio (2t/D), aspect ratio (h/D) and hollow ratio (d/D). Also, a model was developed to predict the peak strength of CFSUT and CFDUT specimens. Results: The result shows that both CFSUT and CFDUT specimens exhibited improved strength, ductility, and energy absorption capacity. For CFSUT and CFSUT specimens, the strength, ductility, and energy absorption capacity increased by more than 1.32, 3.75 and 14.75 times compared to the unconfined concrete specimens, respectively. It is found that the strength decreased as the h/D and d/D ratios increased. The result also shows that the strain of CFSUT and CFDUT at the peak strength increased by more than 3.16 times compared to the unconfined concrete specimens. The proposed model accurately predicted the peak strength with AAE of 2.13%. Conclusion: The uPVC confinement provided a remarkable improvement on the strength, ductility and energy absorption of concrete. Therefore, uPVC tubes can be used as confining material for bridge piers, piles, electric poles, and building columns to increase the strength, ductility and energy absorption of concrete structures.

Publisher

Bentham Science Publishers Ltd.

Subject

Building and Construction

Reference41 articles.

1. Sarir P, Chen J, Asteris PG, Armaghani DJ, Tahir MM. Developing GEP tree-based, neuro-swarm, and whale optimization models for evaluation of bearing capacity of concrete-filled steel tube columns. Eng Comput 2019; 1-19.

2. Woldemariam A M, Oyawa W O, Nyomboi T. Structural Performance of uPVC Confined Concrete Equivalent Cylinders Under Axial Compression Loads. Buildings 2019; 9 (4) : 83.

3. Gathimba KN, Oyawa WO, Mang’uriu GN. Performance of UPVC Pipe Confined Concrete Columns in Compression MSc Thesis 2015.

4. Oyawa WO, Gathimba NK, Mang’uriu GN. Structural response of composite concrete filled plastic tubes in compression. Steel Compos Struct 2016; 21 (3) : 589-604.

5. Xue J, Li H, Zhai L, Ke X, Zheng W, Men B. “Analysis of mechanical behavior and influencing factors of high strength concrete columns with PVC pipe under repeated loading,” Xi’An Jianzhu Keji Daxue Xuebao/Journal Xi’An Univ. Archit Technol 2016; 48 : 24-8.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3