Applicability of Low-intensity Vibrations as a Regulatory Factor on Stem and Progenitor Cell Populations

Author:

Baskan Oznur1ORCID,Karadas Ozge1ORCID,Mese Gulistan2ORCID,Ozcivici Engin1ORCID

Affiliation:

1. Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey

2. Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey

Abstract

Persistent and transient mechanical loads can act as biological signals on all levels of an organism. It is therefore not surprising that most cell types can sense and respond to mechanical loads, similar to their interaction with biochemical and electrical signals. The presence or absence of mechanical forces can be an important determinant of form, function and health of many tissue types. Along with naturally occurring mechanical loads, it is possible to manipulate and apply external physical loads on tissues in biomedical sciences, either for prevention or treatment of catabolism related to many factors, including aging, paralysis, sedentary lifestyles and spaceflight. Mechanical loads consist of many components in their applied signal form such as magnitude, frequency, duration and intervals. Even though high magnitude mechanical loads with low frequencies (e.g. running or weight lifting) induce anabolism in musculoskeletal tissues, their applicability as anabolic agents is limited because of the required compliance and physical health of the target population. On the other hand, it is possible to use low magnitude and high frequency (e.g. in a vibratory form) mechanical loads for anabolism as well. Cells, including stem cells of the musculoskeletal tissue, are sensitive to high frequency, lowintensity mechanical signals. This sensitivity can be utilized not only for the targeted treatment of tissues, but also for stem cell expansion, differentiation and biomaterial interaction in tissue engineering applications. In this review, we reported recent advances in the application of low-intensity vibrations on stem and progenitor cell populations. Modulation of cellular behavior with low-intensity vibrations as an alternative or complementary factor to biochemical and scaffold induced signals may represent an increase of capabilities in studies related to tissue engineering.

Funder

Scientific and Technological Research Council of Turkey

Publisher

Bentham Science Publishers Ltd.

Subject

General Medicine,Medicine (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3