The Molecular and Functional Changes of Neural Stem Cells in Alzheimer’s Disease: Can They be Reinvigorated to Conduct Neurogenesis

Author:

Abu-El-Rub Ejlal1,Khasawneh Ramada R.1,Almahasneh Fatimah A.1,Aloud Basma Milad2,Zegallai Hana M.34

Affiliation:

1. Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan

2. Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada

3. Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Canada

4. DREAM, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada

Abstract

Abstract: Alzheimer’s disease (AD) is considered one of the most complicated neurodegenerative disorders, and it is associated with progressive memory loss and remarkable neurocognitive dysfunction that negatively impacts the ability to perform daily living activities. AD accounts for an estimated 60-80% of dementia cases. AD's previously known pathological basis is the deposition of amyloid β (Aβ) aggregates and the formation of neurofibrillary tangles by tau hyperphosphorylation in the cell bodies of neurons that are located in the hippocampus, neocortex, and certain other regions of the cerebral hemispheres and limbic system. The lack of neurotransmitter acetylcholine and the activation of oxidative stress cascade may also contribute to the pathogenesis of AD. These pathological events can lead to irreversible loss of neuronal networks and the emergence of memory impairment and cognitive dysfunction that can engender an abnormal change in the personality. AD cannot be cured, and to some extent, the prescribed medications can only manage the symptoms associated with this disease. Several studies have reported that the regenerative abilities of neural stem/progenitor cells (NSCs) remarkably decline in AD, which disturbs the balancing power to control its progression. Exogenous infusion or endogenous activation of NSCs may be the ultimate solution to restore the neuronal networks in the brain of AD patients and regenerate the damaged areas responsible for memory and cognition. In this mini-review, we will touch upon the fate of NSCs in AD and the utilization of neurogenesis using modified NSCs to restore cognitive functions in AD.

Publisher

Bentham Science Publishers Ltd.

Subject

General Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3