The Noncoding Side of Cardiac Differentiation and Regeneration

Author:

Pagano Francesca1ORCID,Calicchio Alessandro2,Picchio Vittorio1,Ballarino Monica2

Affiliation:

1. Department of Medico-Surgical Sciences and Biotechnology, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy

2. Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy

Abstract

Large scale projects such as FANTOM and ENCODE led to a revolution in our comprehension of the mammalian transcriptomes by revealing that ~53% of the produced RNAs do not encode for proteins. These transcripts, defined as noncoding RNAs (ncRNAs), constitute a heterogeneous group of molecules which can be categorized in two main classes, namely small and long, according to their length. In animals, the first-class includes Piwi-interacting RNAs (piRNAs), small interfering RNAs (siRNAs) and microRNAs (miRNAs). Among them, the best-characterized subgroup is represented by miRNAs, which are known to regulate gene expression largely at the post-transcriptional level. In contrast, long noncoding RNAs (lncRNAs) represent a more heterogeneous group of > 200 nucleotides long transcripts, that act through a variety of mechanisms at both transcriptional and posttranscriptional level. Here, we discuss how miRNAs and lncRNAs are emerging as pivotal regulators of cardiac muscle development and how the alteration of ncRNA expression was seen to disturb the physiology of all the different cell types forming the cardiac tissue. Particular emphasis is given to those species that are expressed and are known to regulate the capacity of cardiac progenitor cells (CPCs), currently used in regenerative medicine protocols, to proliferate and differentiate. Understanding how the ncRNAmediated circuitries regulate heart homeostasis is one of the research areas expected to have a high impact, improving the therapeutic efficacy of stem/progenitor-cells treatments for translation into clinical applications.

Funder

Sapienza University

Publisher

Bentham Science Publishers Ltd.

Subject

General Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3