Stem Cell Senescence: the Obstacle of the Treatment of Degenerative Disk Disease

Author:

Chen Ying1,Tang Liling1ORCID

Affiliation:

1. Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering Chongqing University, Chongqing 400044, China

Abstract

Intervertebral disc (IVD) has a pivotal role in the maintenance of flexible motion. IVD degeneration is one of the primary causes of low back pain and disability, which seriously influences patients’ health, and increases the family and social economic burden. Recently, stem cell therapy has been proven to be more effective on IVD degeneration disease. However, stem cell senescence is the limiting factor in the IVD degeneration treatment. Senescent stem cells have a negative effect on the self-repair on IVD degeneration. In this review, we delineate that the factors such as telomerase shortening, DNA damage, oxidative stress, microenvironment and exosomes will induce stem cell aging. Recent studies tried to delay the aging of stem cells by regulating the expression of aging-related genes and proteins, changing the activity of telomerase, improving the survival microenvironment of stem cells and drug treatment. Understanding the mechanism of stem cell aging and exploring new approaches to delay or reverse stem cell aging asks for research on the repair of the degenerated disc.

Funder

Fundamental Research Funds for the Central Universities

Graduate research and innovation foundation of Chongqing, China

Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

General Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3