Mass Transfer of Olanzapine in the Liquid Lamellar Phases Formed by the Self-assembly of Glycerol Monooleate (GMO): Experimental Data and Mathematical Modeling

Author:

Bagheri Gita1,Khanali Mehdi2

Affiliation:

1. Department of Chemical Engineering, Shahryar Branch, Islamic Azad University, Shahryar, Iran.

2. Department of Medicine Chemistry, Shahryar Branch, Islamic Azad University, Shahryar, Iran.

Abstract

Aims: The present study aimed to optimise the formulation of Olanzapine (OZ)-loaded liquid lamellar phase by using Response Surface Methodology (RSM). Background: In this study, poly (2-ethyl-2-oxazoline) (PEOZ) was selected to modify liquid lamellar phases. The OZ was released from the phases mainly through swelling and diffusion-controlled mechanism simultaneously. Objective: Additionally, two types of mathematical models, based on the lumped and diffusion approaches, were presented for the diffusional release of OZ from the liquid lamellar phases, the second of which was solved with an analytical solution. The controlled release profiles of the models were compared with the in vitro experimental release profiles. Method: Further, the Box-Behnken experimental design was employed to design the liquid lamellar phase with the three factors, including the weight ratio of water/GMO (w/w) (X1) and PEOZ/GMO (w/w) (X2), and the percentage of OZ (X3). The liquid lamellar phases were prepared based on the top-down method, followed by fragmentation by sonication. Furthermore, the diffusion coefficients of the liquid lamellar phases were calculated, and the effects of variables were evaluated on particle size and diffusion coefficient, as well as the constant of the lumped model. Result: The results revealed an increase in particle size following an enhancement in water level in the liquid lamellar phases, as well as less aggregation with the addition of PEOZ. Conclusion: The generated model was validated by comparing the experimental data and predicted model values graphically, the results of which represented compatibility between the lumped model and experimental data.

Publisher

Bentham Science Publishers Ltd.

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3