Effect of Additives on the Electrical, Structural and Mechanical Property Modification of PEO-NH4HF2 based Polymer Electrolytes

Author:

Sharma Jitender Paul1ORCID

Affiliation:

1. Department of Physics, Himachal Pradesh Technical University, Hamirpur, H.P. 177001,India

Abstract

Objective: Polyethylene oxide (PEO) composed of 10 wt% ammonium bifluoride (NH4HF2) exhibited higher conductivity of 5.96x10-6 S/cm as compared to other concentrations of salt at room temperature. The effect of additives, i.e., nano-sized fumed silica concentration as nanofiller and propylene carbonate (PC) concentration as plasticizer on electrical, structural, as well as mechanical property studies of polymer electrolytes has been studied. Methods: The ionic conductivity, as well as dielectric studies of polymer electrolytes consisting of polyethylene oxide and different (x wt%) ammonium bifluoride (x=1, 2.5, 5, 10 and 15 wt %), have been measured using complex impedance spectroscopic technique. X-ray diffraction (XRD) and differential scanning calorimetry/thermogravimetric analysis (DSC/ TGA) studies have been conducted to observe the effect of additives on crystalline phase, crystallite size, melting temperature and weight loss of different polymer electrolytes. The effect of additives on the mechanical properties (tensile strength, modulus of elasticity and % elongation at break) of different polymer electrolytes has also been studied by Universal Testing Machine (UTM). Results: The maximum conductivity achieved was 1.55× 10-4 S/cm in case of plasticized nanocomposite polymer electrolytes with the simultaneous presence of 3 wt% fumed silica and 0.3 ml propylene carbonate. The variation of ionic conductivity at different temperatures and activation energy values of different polymer electrolytes were also measured and observed in good correlation. Conclusion: The observed enhancement in the ionic conductivity of polymer electrolytes with additives is due to an increase in carrier concentration, amorphous content, chain flexibility, as well as the formation of more conducting pathways. Hence, this new approach led to the development of plasticized nanocomposite polymer electrolytes with high ionic conductivity and improved structural and mechanical properties.

Publisher

Bentham Science Publishers Ltd.

Subject

General Chemical Engineering

Reference51 articles.

1. Bruce P.G.; Gray FM Polymer electrolytes II: physical principlesSolid state electrochemistry 1997

2. MacCallum J.R.; Vincent CA Polymer electrolyte reviews-2 1987

3. Scrosati B.; Applications of electroactive polymers 1993

4. Armand M.; Tarascon J.M.; Building better batteries. Nature 2008,451(7179),652-657

5. Meyer W.H.; Polymer electrolytes for lithium-ion batteries. Adv Mater 1998,10(6),439-448

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3