Deposition Time-dependent Study of Structural and Optical Properties of PbS Thin Films Grown by CBD Method

Author:

Chaudhary Minakshi1,Hase Yogesh1,Punde Ashwini1,Shinde Pratibha1,Waghmare Ashish1,Vairale Priti1,Doiphode Vidya1,Patil Nilesh1,Pandharkar Subhash1,Prasad Mohit2,Jadkar Sandesh2

Affiliation:

1. School of Energy Studies, Savitribai Phule Pune University, Pune 411 007,India

2. Department of Physics, Savitribai Phule Pune University, Pune 411 007,India

Abstract

Background: Thin films of PbS were prepared onto glass substrates by using a simple and cost-effective CBD method. Methods: The influence of deposition time on structural, morphology and optical properties have been investigated systematically. The XRD analysis revealed that PbS films are polycrystalline with preferred orientation in (200) direction. Enhancement in crystallinity and PbS crystallite size has been observed with an increase in deposition time. The formation of single-phase PbS thin films has been further confirmed by Raman spectroscopy. The surface morphology analysis revealed the formation of prismatic and pebble-like PbS particles and with an increase in deposition time, these PbS particles are separated from each other without secondary growth. The data obtained from the EDX spectra show the formation of high-quality but slightly sulfur-rich PbS thin films over the entire range of deposition time studied. Results and Conclusion: All films show an increase in absorption with an increase in deposition time and strong absorption in the visible and sub-bandgap regime of the NIR range of the spectrum with red-shift in band edge. The optical band gap shows a decreasing trend, as deposition time increases but it is higher than the bandgap of bulk PbS.

Publisher

Bentham Science Publishers Ltd.

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3