Effect of Process Variables on the Crevice Corrosion in Type-304 Stainless Steels

Author:

Adeniyi Adewale George1ORCID,Ighalo Joshua O.1ORCID

Affiliation:

1. Department of Chemical Engineering, Faculty of Engineering and Technology, University of Ilorin, Ilorin, P.M. B. 1515, Nigeria

Abstract

Background: Corrosion is a major problem in most industries making use of metals across the world. The protection of metals and pipelines in the petroleum industry against different forms of corrosion has been of interest to stakeholders for many years. Objective: In this study, the effects of NaCl concentration, crevice scaling factor and immersion time on the percentage area attacked and the maximum depth of crevice attack in type- 304 stainless steels were investigated. Method: The assembly and experimentation of crevice attack in type-304 stainless steels were according to ASTM G-78. Furthermore, the open circuit potential of the system was determined and numerical optimisation of the process factors was conducted. Results: The open-circuit potential for creviced SS-304 revealed a greater susceptibility to crevice corrosion at higher NaCl concentrations. It was observed that the percentage area attacked and the maximum depth of attack increased with increasing NaCl concentration and time. However, the higher scaling factors led to a lesser area and depth of attack. Numerical optimisation revealed that the optimum value (minimum) of % area attacked and the maximum depth of attack were 0.00005847% and 0.00984 mm at 2.43 wt% NaCl, 19.3 crevices scaling factor and 15 days, respectively. Conclusion: It can be concluded that by taking appropriate measures of maintenance and avoidance of moist environment (supplying O and H2O), the crevice corrosion of SS-304 can be mitigated.

Publisher

Bentham Science Publishers Ltd.

Subject

General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3