Understanding Process Variables and their Interactions for Maximizing Production of Artemisinin Derivative Artemether (Anti-Malarial Drug) Through Cunninghamella echinulata var elegans at 5 L Bioreactor Level

Author:

Dubey Kashyap Kumar1,Kumar Punit1

Affiliation:

1. Microbial Process Development Laboratory, University Institute of Engineering and Technology, Maharshi Dayanand University, Rohtak-124001, Haryana, India

Abstract

Background: Malaria is one of the life threatening diseases which is caused by Plasmodium sp. of protozoa and uses Anopheles mosquitos as vector. Plasmodium vivax and Plasmodium falciparum are common form of malaria parasite. Artemisinin is reported for its antimalarial activities and Artemether which is a methyl ether derivative of Artemisinin, has been found effective against P. falciparum. Methods: In the present study, bioconversion of Artemisinin into Artemether was carried out experimentally and the statistical tools like experimental factorial design and Response Surface Methodology were used to find optimal conditions (concentration of Artemisinin, age of inoculum, temperature & pH) using Cunninghamella echinulata var. elegans. Experimental conditions for maximum product recovery from culture broth were also optimized using various polar and non-polar solvents for extraction. Artemether purity was analyzed by reverse-phase HPLC. Experimental data was fitted in a quadratic model and effect of various parameters was analyzed. Results: It was found that bioconversion of Artemisinin into Artemether is growth associated process. It was observed that molasses used as carbon source supported production of Artemether to 3.4g/L. The biomass and oxygen are key element affecting of bioconversion of Artemisinin into Artemether such as higher dissolved oxygen reduced the Artemether bioconversion. The highest bioconversion of Artemisinin into Artemether was obtained at temperature 25.5oC, 5g/L concentration of Artemisinin, at age of inoculum of 44.5 h and at pH 6.0. Model suggested the highest bioconversion of Artemisinin into Artemether was 54% at shake flask level which was near about experimental finding. An optimal condition for bioconversion was also analyzed and 64% bioconversion was obtained in 5L bioreactor. Conclusion: The outcomes of the study provided optimum conditions for bioconversion of Artemisinin into Artemether.

Publisher

Bentham Science Publishers Ltd.

Subject

General Pharmacology, Toxicology and Pharmaceutics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3