Synthesis, Antitubercular Activity, Molecular Modeling and Docking Studies of Novel Thiazolidin-4-One Linked Dinitrobenzamide Derivatives

Author:

Singh Karanveer1,Sinha Manish2,Kuletha Shruti1,Kaur Baljeet1,Kaur Amandeep1,Tripathi Dinesh K.3,Srivastava Kishore K.3,Murugesan Vanangamudi4,Srikala Rajala4,Chaudhary Amrendra K.5

Affiliation:

1. Department of Pharmaceutical Chemistry, ASBASJSM college of Pharmacy, Bela, Ropar, Punjab 140111, India

2. Laureate Institute of Pharmacy, Kathog, Kangra. Himachal Pradesh, India

3. Department of Microbiology, CSIR-Central Drug Research Institute, Lucknow, India

4. Department of Pharmaceutical Chemistry, Sree Vidyanikethan College of Pharmacy, Sree Sainath Nagar, Tirupati, A. Rangampet, Andhra Pradesh, India

5. Department of Pharmacy, LLRM Medical College, Meerut, India

Abstract

Background: Tuberculosis is a catastrophe sprawled across the world. The World Health Organization Global Tuberculosis Report 2017 inferred that there were an estimated 10.4 million people suffered from tuberculosis including 490000 Multidrug-Resistant TB (MDR-TB) cases. Several new lead molecules like dinitrobenzamide derivatives were found to be highly active against multidrugresistant strains of M. tuberculosis. To further explore the pharmacophoric space around the dinitobenzamide moiety, a series of compounds have been synthesized by linking it with the thiazolidin- 4-one. The presented work is an effort to study the biological effect of thiazolidin-4-one scaffold on dinitrobenzamide derivatives as antitubercular agents. A molecular modeling study was also performed on the synthesized molecules to reveal the requirements for further lead optimization. Methods: The thiazolidin-4-one linked 3,5-dinitrobenzamide derivatives have been synthesized by onepot three-component condensation reaction of an amine, substituted aldehydes and thioglycolic acid in presence of N, N'-Dicyclohexylcarbodiimide (DCC). These compounds were evaluated against Mycobacterium tuberculosis H37Ra. A pharmacophore modeling approach has been used in order to explore the collection of possible pharmacophore queries of thiazolidin-4-one linked 3, 5-dinitrobenzamide derivatives against M. tuberculosis. The synthesized compounds were docked on to the M. tuberculosis DprE1 enzyme to identify the structural features requirement of these analogs against this potential target of M. tuberculosis. Results: The synthesized compounds showed the antitubercular activity in the range of 6.25-50 μg/ml. The pharmacophore modeling suggests that the presence of aromatic moiety, thiazolidin-4-one ring and one of the nitro groups are significant for inhibiting the enzymatic activity. While docking studies showed that hydrophobic and hydrogen bond interactions of the aromatic moiety and nitro group crucial to inactivate the DprE1 enzyme. Conclusion: The study showed that the linking of thiazolidin-4-one with dinitrobenzamide leads to compounds active against M. tuberculosis. These findings also suggested that further lead optimization would be carried out by focusing on the aromatic system along with electron-rich substituents placed on the thiazolidin-4-one for making better hydrophobic and hydrogen bond interactions with the DprE1 target.

Publisher

Bentham Science Publishers Ltd.

Subject

General Pharmacology, Toxicology and Pharmaceutics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3