Nanocrystal Materials for Resistive Memory and Artificial Synapses: Progress and Prospects

Author:

Chen Yingchun1,Chen Dunkui2,Zhang Chi2,Zhang Xian2

Affiliation:

1. National Intellectual Property Information Service Center of HUST, Huazhong University of Science and Technology Library, Wuhan 430074, P.R. China

2. National Intellectual Property Information Service Center of HUST, Huazhong University of Science and Technology Library, Wuhan 430074, P.R. China

Abstract

Background: Resistive random-access memory (RRAM) is considered to be the most promising next-generation non-volatile memory because of its low cost, low energy consumption, and excellent data storage characteristics. However, the on/off (SET/RESET) voltages of RRAM are too random to replace the traditional memory. Nanocrystals (NCs) offer an appealing option for these applications since they combine excellent electronic/optical properties and structural stability and can address the requirements of low-cost, large-area, and solution-processed technologies. Therefore, the doping NCs in the function layer of RRAM are proposed to localize the electric field and guide conductance filaments (CFs) growth. Objective: The purpose of this article is to focus on a comprehensive and systematical survey of the NC materials, which are used to improve the performance of resistive memory (RM) and optoelectronic synaptic devices and review recent experimental advances in NC-based neuromorphic devices from artificial synapses to light-sensory synaptic platforms. Methods: Extensive information related to NCs for RRAM and artificial synapses and their associated patents were collected. This review aimed to highlight the unique electrical and optical features of metal and semiconductor NCs for designing future RRAM and artificial synapses. Results: It was demonstrated that doping NCs in the function layer of RRAM could not only improve the homogeneity of SET/RESET voltage but also reduce the threshold voltage. At the same time, it could still increase the retention time and provide the probability of mimicking the bio-synapse. Conclusion: NC doping can significantly enhance the overall performance of RM devices, but there are still many problems to be solved. This review highlights the relevance of NCs for RM and artificial synapses and also provides a perspective on the opportunities, challenges, and potential future directions.

Publisher

Bentham Science Publishers Ltd.

Subject

General Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3