Affiliation:
1. National Intellectual Property Information Service Center of HUST, Huazhong University of Science and Technology Library, Wuhan 430074, P.R. China
2. National Intellectual Property Information Service Center of HUST, Huazhong University of Science and Technology
Library, Wuhan 430074, P.R. China
Abstract
Background:
Resistive random-access memory (RRAM) is considered to be the most promising
next-generation non-volatile memory because of its low cost, low energy consumption, and excellent
data storage characteristics. However, the on/off (SET/RESET) voltages of RRAM are too random
to replace the traditional memory. Nanocrystals (NCs) offer an appealing option for these applications
since they combine excellent electronic/optical properties and structural stability and can address the requirements
of low-cost, large-area, and solution-processed technologies. Therefore, the doping NCs in
the function layer of RRAM are proposed to localize the electric field and guide conductance filaments
(CFs) growth.
Objective:
The purpose of this article is to focus on a comprehensive and systematical survey of the NC
materials, which are used to improve the performance of resistive memory (RM) and optoelectronic
synaptic devices and review recent experimental advances in NC-based neuromorphic devices from artificial
synapses to light-sensory synaptic platforms.
Methods:
Extensive information related to NCs for RRAM and artificial synapses and their associated
patents were collected. This review aimed to highlight the unique electrical and optical features of metal
and semiconductor NCs for designing future RRAM and artificial synapses.
Results:
It was demonstrated that doping NCs in the function layer of RRAM could not only improve
the homogeneity of SET/RESET voltage but also reduce the threshold voltage. At the same time, it
could still increase the retention time and provide the probability of mimicking the bio-synapse.
Conclusion:
NC doping can significantly enhance the overall performance of RM devices, but there are
still many problems to be solved. This review highlights the relevance of NCs for RM and artificial synapses
and also provides a perspective on the opportunities, challenges, and potential future directions.
Publisher
Bentham Science Publishers Ltd.
Subject
General Engineering,Condensed Matter Physics,General Materials Science