Affiliation:
1. SVKM NMIMS School of Pharmacy and Technology Management, Shirpur, Dhule, India-425405.
2. Department of Pharmacy, Government Medical College, Patiala, Punjab-147001.
3. Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan.
Abstract
Background:
Sertraline hydrochloride is the most widely used selective serotonin reuptake inhibitor (SSRI) for the treatment of several depressive disorders. Its applicability is limited due to extensive metabolism and poor oral bioavailability of 44 %.
Objective:
The current research focused on improving the solubility and oral bioavailability of Sertraline by using microemulsions developed by a self-micro emulsifying drug delivery system (SMEDDS) for significant antidepressant action.
Method:
SMEDDS were developed by selecting appropriate proportions of oil, surfactant, and co-solvents and out of them isopropyl myristate, tween 80 and propylene glycol were identified as best. The emulsification zone was demonstrated by a ternary phase diagram, and compatibility was confirmed with Fourier-transformed infrared spectroscopy (FT-IR). The formulated SMEDDS were characterized for robustness to dilution, globule size (GS), polydispersity index (PDI), viscosity, in-vitro dissolution and diffusion study, and drug release kinetics study.
Results:
All the batches (A1-A9) passes the test and A3 was selected as an optimized batch that doesn’t show phase separation, precipitation with globule size (101 nm), PDI (0.319), drug content (99.14±0.35 %), viscosity (10.71±0.02 mPa), self-emulsification time (46 sec), in-vitro drug release (98.25±0.22 %) within 8 h, release kinetics (Higuchi) and effective antidepressant in in-vitro diffusion studies.
Conclusion:
An optimized batch A3 observed circular in shape estimated by Transmission electron microscopy (TEM) and passes all the thermodynamic stability testing with loss of 0.271 mg of the drug after 90 days and showed marked antidepressant action with higher stability.
Publisher
Bentham Science Publishers Ltd.
Subject
General Engineering,Condensed Matter Physics,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献