Comparison of Bromhexine and its Active Metabolite - Ambroxol as Potential Analgesics Reducing Oxaliplatin-induced Neuropathic Pain - Pharmacodynamic and Molecular Docking Studies

Author:

Furgała-Wojas Anna1ORCID,Kowalska Magdalena2ORCID,Nowaczyk Alicja2ORCID,Fijałkowski Łukasz2ORCID,Sałat Kinga1ORCID

Affiliation:

1. Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland

2. Department of Organic Chemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 2 dr. A. Jurasza St., 85-094, Bydgoszcz, Poland

Abstract

Background: Painful peripheral neuropathy is a dose-limiting adverse effect of the antitumor drug oxaliplatin. The main symptoms of neuropathy: tactile allodynia and cold hyperalgesia, appear in more than 80% of patients on oxaliplatin therapy and are due to the overexpression of neuronal sodium channels (Navs) and neuroinflammation. Objective: This study assessed antiallodynic and antihyperalgesic properties of two repurposed drugs with antiinflammatory and Nav-blocking properties (bromhexine and its pharmacologically active metabolite - ambroxol) in a mouse model of neuropathic pain induced by oxaliplatin. Using molecular docking techniques, we predicted targets implicated in the observed in vivo activity of bromhexine. Methods: Oxaliplatin (a single intraperitoneal dose of 10 mg/kg) induced tactile allodynia and cold hyperalgesia in CD-1 mice and the effectiveness of single-dose or repeated-dose bromhexine and ambroxol to attenuate pain hypersensitivity was assessed in von Frey and cold plate tests. Additionally, Veber analysis and molecular docking experiments of bromhexine on mouse (m) and human (h) Nav1.6-1.9 were carried out. Results: At the corresponding doses, ambroxol was more effective than bromhexine as an antiallodynic agent. However, at the dose of 150 mg/kg, ambroxol induced motor impairments in mice. Repeated-dose bromhexine and ambroxol partially attenuated the development of late-phase tactile allodynia in oxaliplatin-treated mice. Only 7-day administration of bromhexine attenuated the development of late-phase cold hyperalgesia. Bromhexine was predicted to be a strong inhibitor of mNav1.6, mNav1.7, mNav1.9, and hNav1.7-hNav1.9. Conclusion: The conversion of bromhexine to other than ambroxol active metabolites should be considered when interpreting some of its in vivo effects. Nav-blocking properties of bromhexine (and previously also predicted for ambroxol) might underlie its ability to attenuate pain caused by oxaliplatin.

Funder

National Science Centre

Publisher

Bentham Science Publishers Ltd.

Subject

Clinical Biochemistry,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3