Profiles of Two Glycaemia Modifying Drugs on the Expression of Rat and Human Sulfotransferases

Author:

Dutta Sangita M.1,Chen Guangping2,Maiti Smarajit3

Affiliation:

1. Department of Biological Sciences, Midnapore City College, Midnapore, West Bengal, India

2. Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK 74078, United States

3. Cell and Molecular Therapeutics Laboratory, Department of Biochemistry and Biotechnology, Oriental Institute of Science and Technology, Midnapore-721102, West Bengal, India

Abstract

Aims: To study the effects of blood glucose regulating compounds on human and rat sulfotransferases (SULTs) expressions. Background: Phase-II enzymes, sulfotransferases catalyze the sulfuryl-group-transfer to endogenous/exogenous compounds. The alteration of expressions of SULTs may have influence on the sulfation of its substrate and other biomolecules. Objectives: The influence of the altered biotransformation might alter different biochemical events, drug-drug interactions and bioaccumulation or excretion pattern of certain drug. Methods: In this brief study, diabetes-inducing drug streptozotocin (STZ; 10 or 50 mg/kg to male Sprague Dawley rat for 2 weeks) or hyperglycemia controlling drug tolbutamide (TLB 0.1 or 10μM to human hepato-carcinoma cells, HepG2 for 10 days) was applied and the SULTs expressions were verified. Extensive protein-protein (STa, SULT2A1/DHEAST) interactions were studied by the STRING (Search-Tool-for-the-Retrieval-of-Interacting Genes/Proteins) Bioinformatics-software. Results: Present result suggests that while STZ increased the STa (in rat) (dehydroepiandrosterone catalyzing SULT; DHEAST in human HepG2), tolbutamide decreased PPST (phenol catalyzing SULT) and DHEAST activity in human HepG2 cells. Moderate decreases of MPST (monoamine catalyzing SULT) and EST (estrogen catalyzing) activities are noticed in this case. STa/DHEAST was found to be highly interactive to SHBG/- sex-hormone-binding-globulin; PPARα/lipid-metabolism-regulator; FABP1/fatty-acid-binding-protein. Conclusions: Streptozotocin and tolbutamide, these two glycaemia-modifying drugs demonstrated regulation of rat and human SULTs activities. The reciprocal nature of these two drugs on SULTs expression may be associated with their contrasting abilities in influencing glucose-homeostasis. Possible association of certain SULT-isoform with hepatic fat-regulations may indicate an unfocused link between calorie-metabolism and the glycemic-state of an individual. Explorations of this work may uncover the role of sulfation metabolism of specific biomolecule on cellular glycemic regulation.

Publisher

Bentham Science Publishers Ltd.

Subject

Clinical Biochemistry,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3