Toxicity Mechanism of Gadolinium Oxide Nanoparticles and Gadolinium Ions in Human Breast Cancer Cells

Author:

Akhtar Mohd Javed1ORCID,Ahamed Maqusood1ORCID,Alhadlaq Hisham1ORCID,Alrokayan Salman2ORCID

Affiliation:

1. King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia

2. Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia

Abstract

Background: Due to the potential advantages of Gadolinium Nanoparticles (NPs) over gadolinium elements, gadolinium based NPs are currently being explored in the field of MRI. Either in elemental form or nanoparticulate form, gadolinium toxicity is believed to occur due to the deposition of gadolinium ion (designated as Gd3+ ion or simply G ion). Objective: There is a serious lack of literature on the mechanisms of toxicity caused by either gadolinium-based NPs or ions. Breast cancer tumors are often subjected to MRIs, therefore, human breast cancer (MCF-7) cells could serve as an appropriate in vitro model for the study of Gadolinium Oxide (GO) NP and G ion. Methods: Cytotoxicity and oxidative damage was determined by quantifying cell viability, cell membrane damage, and Reactive Oxygen Species (ROS). Intracellular Glutathione (GSH) was measured along with cellular Total Antioxidant Capacity (TAC). Autophagy was determined by using Monodansylcadaverine (MDC) and Lysotracker Red (LTR) dyes in tandem. Mitochondrial Membrane Potential (MMP) was measured by JC-1 fluorescence. Physicochemical properties of GO NPs were characterized by field emission transmission electron microscopy, X-ray diffraction, and energy dispersive spectrum. Results: A time- and concentration-dependent toxicity and oxidative damage was observed due to GO NPs and G ions. Bax/Bcl2 ratios, FITC-7AAD double staining, and cell membrane blebbing in phase-contrast images all suggested different modes of cell death induced by NPs and ions. Conclusion: In summary, cell death induced by GO NPs with high aspect ratio favored apoptosis-independent cell death, whereas G ions favored apoptosis-dependent cell death.

Funder

Deanship of Scientific Research of King Saud University

Publisher

Bentham Science Publishers Ltd.

Subject

Clinical Biochemistry,Pharmacology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3