Pharmacokinetic Evaluation of 99mTc-radiolabeled Solid Lipid Nanoparticles and Chitosan Coated Solid Lipid Nanoparticles

Author:

Gharibkandi Nasrin Abbasi1ORCID,Molavipordanjani Sajjad1ORCID,Akbari Jafar2ORCID,Hosseinimehr Seyed Jalal1ORCID

Affiliation:

1. Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran

2. Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran

Abstract

Background: Solid Lipid Nanoparticles (SLNs) possess unique in vivo features such as high resistivity, bioavailability, and habitation at the target site. Coating nanoparticles with polymers such as chitosan greatly affects their pharmacokinetic behavior, stability, tissue uptake, and controlled drug delivery. The aim of this study was to prepare and evaluate the biodistribution of 99mTc-labeled SLNs and chitosan modified SLNs in mice. Methods: 99mTc-oxine was prepared and utilized to radiolabel pre-papered SLNs or chitosan coated SLNs. After purification of radiolabeled SLNs (99mTc-SLNs) and radiolabeled chitosan-coated SLNs (99mTc-Chi-SLNs) using Amicon filter, they were injected into BALB/c mice to evaluate their biodistribution patterns. In addition, nanoparticles were characterized using Transmission Electron Microscopy (TEM), Fourier-transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), X-ray Powder Diffraction (XRD) and Dynamic Light Scattering (DLS). Results: 99mTc-oxine with high radiochemical purity (RCP~100%) and stability (RCP > 97% at 24 h) was used to provide 99mTc-SLNs and 99mTc-Chi-SLNs with high initial RCP (100%). TEM image and DLS data suggest 99mTc- SLNs susceptibility to aggregation. To that end, the main portion of 99mTc-SLNs radioactivity accumulates in the liver and intestines, while 99mTc-Chi-SLNs sequesters in the liver, intestines and kidneys. The blood radioactivity of 99mTc-Chi-SLNs was higher than that of 99mTc-SLNs by 7.5, 3.17 and 3.5 folds at 1, 4 and 8 h post-injection. 99mTc- Chi-SLNs uptake in the kidneys in comparison with 99mTc-SLNs was higher by 37.48, 5.84 and 11 folds at 1, 4 and 8h. Conclusion: The chitosan layer on the surface of 99mTc-Chi-SLNs reduces lipophilicity in comparison with 99mTc- SLNs. Therefore, 99mTc-Chi-SLNs are less susceptible to aggregation, which leads to their lower liver uptake and higher kidney uptake and blood concentration.

Funder

Mazandaran University of Medical Sciences

Publisher

Bentham Science Publishers Ltd.

Subject

Clinical Biochemistry,Pharmacology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3