Physicochemical, Interaction & Topological Descriptors vs. hMAO-A Inhibition of Aplysinopsin Analogs: A Boulevard to the Discovery of Semi-synthetic Antidepression Agents

Author:

Singla Rajeev K.1ORCID,Ashraf Ghulam Md.2,Ganash Magdah3,G. Varadaraj Bhat4,Shen Bairong1ORCID

Affiliation:

1. Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, Sichuan, China

2. Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia

3. Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

4. Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India

Abstract

Background: Depression, a neurological disorder, is globally the 4th leading cause of chronic disabilities in human beings. Objective: This study aimed to model a 2D-QSAR equation that can facilitate the researchers to design better aplysinopsin analogs with potent hMAO-A inhibition. Methods: Aplysinopsin analogs dataset were subjected to ADME assessment for drug-likeness suitability using StarDrop software before modeled equation. 2D-QSAR equations were generated using VLife MDS 4.6. Dataset was segregated into training and test set using different methodologies, followed by variable selection. Model development was done using principal component regression, partial least square regression, and multiple regression. Results: The dataset has successfully qualified the drug-likeness criteria in ADME simulation, with more than 90% of molecules cleared the ideal conditions, including intrinsic solubility, hydrophobicity, CYP3A4 2C9pKi, hERG pIC50, etc. 112 models were developed using multiparametric consideration of methodologies. The best six models were discussed with their extent of significance and prediction capabilities. ALP97 was emerged out as the most significant model out of all, with ~83% of the variance in the training set, the internal predictive ability of ~74%, while having the external predictive capability of ~79%. Conclusion: ADME assessment suggested that aplysinopsin analogs are worth investigating. Interaction among the descriptors in the way of summation or multiplication products are quite influential and yield significant 2D-QSAR models with good prediction efficiency. This model can be used to design a more potent hMAO-A inhibitor with an aplysinopsin scaffold, which can then contribute to the treatment of depression and other neurological disorders.

Funder

Covid-19 research projects of West China Hospital Sichuan University

National Natural Science Foundation of China

Deanship of Scientific Research (DSR), King Abdulaziz University

Publisher

Bentham Science Publishers Ltd.

Subject

Clinical Biochemistry,Pharmacology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3