Structure of the Blood Brain Barrier and its Role in the Transporters for the Movement of Substrates across the Barriers

Author:

S Ankul Singh1,Vellapandian Chitra1

Affiliation:

1. Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India

Abstract

Abstract: For the brain to operate normally and to develop with structural integrity in addition to neuronal function, blood-brain barrier present in brain capillaries serves as a vital barrier mechanism. In addition to the transport barrier created by membranes, transporters, and vesicular processes, the structure and function of the BBB are summarised. The physical barrier is created by endothelial tight junctions. The permeability and transport of molecules between extracellular fluid and plasma are constrained by the presence of tight junctions between neighbouring endothelial cells. Each solute must pass through both membranes in the luminal and abluminal divisions. The functions of the neurovascular unit are described, with special emphasis on the pericytes, microglia, and astrocyte endfeet. The luminal membrane contains five separate facilitative transport mechanisms, each of which is exclusive to a few substrates. Nevertheless, the import of big-branched and aromatic neutral amino acids is facilitated by two key carriers (System L and y+) in the plasma membrane. It is asymmetrically present in both membranes. The sodium pump Na+/K+-ATPase is highly expressed in the abluminal membrane, where many Na+ dependent transport mechanisms move amino acids against its concentration gradient. The trojan horse strategy, which uses molecular tools to bind the medication and its formulations, is also preferred in drug delivery. The BBB's cellular structure, the transport systems unique to each substrate, and the necessity to identify transporters with changes that assist the transfer of various medications have all been changed in the current work. Nevertheless, to rule out the BBB passage for the new class of neuroactive medications, the mixing of traditional pharmacology and nanotechnology needs to be focused on outcomes that show promise.

Publisher

Bentham Science Publishers Ltd.

Subject

Clinical Biochemistry,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3