Comprehensive Identification of Astilbin Metabolites in Rats Based on Multiple Metabolite Templates Combined with UHPLC-Q-Exactive Mass Spectrometry

Author:

Jiang Shan1,Li Haoran2,Yang Ailin1,Zhang Hongbing3,Dong Pingping2,Dong Fan1,Dai Long1,Wang Shaoping4,Zhang Jiayu1

Affiliation:

1. School of Pharmacy, Bin Zhou Medical University, Yantai 264003, China

2. School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China

3. Pharmaceutical Department, Traditional Chinese Medicine Hospital of Zaozhuang, Zaozhuang 277000, China

4. Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China

Abstract

Background : Astilbin, a dihydroflavonoid compound widely found in plants, exhibits a variety of pharmacological activities and biological effects. However, little is known about the metabolism of this active compound in vivo, which is very helpful for elucidating the pharmacodynamic material basis and application of astilbin. Objective: To establish a rapid profiling and identification method for metabolites in rat urine, faeces and plasma using a UHPLC-Q-Exactive mass spectrometer in negative ion mode. Methods: In this study, a simple and rapid systematic strategy and 7 metabolite templates, which were established based on previous reports, were utilized to screen and identify astilbin metabolites. Results: As a result, a total of 71 metabolites were detected and characterized, among which 32 metabolites were found in rat urine, while 27 and 38 metabolites were characterized from rat plasma and faeces, respectively. These metabolites were presumed to be generated through ring cleavage, sulfation, dehydrogenation, methylation, hydroxylation, glucuronidation, dehydroxylation and their composite reactions. Conclusion: This study illustrated the capacity of the sensitive UHPLC-Q-Exactive mass spectrometer analytical system combined with the data-mining methods to rapidly elucidate the unknown metabolism. Moreover, the comprehensive metabolism study of astilbin provided an overall metabolic profile, which will be of great help in predicting the in vivo pharmacokinetic profiles and understanding the action mechanism of this active ingredient.

Funder

Binzhou Medical University Scientific Research Fund for Highlevel Talents

Young and Creative Team for Talent Introduction of China, Shandong Province

Publisher

Bentham Science Publishers Ltd.

Subject

Clinical Biochemistry,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3