Murburn Precepts for Cytochrome P450 Mediated Drug/Xenobiotic Metabolism and Homeostasis

Author:

Parashar Abhinav1,Manoj Kelath M.1ORCID

Affiliation:

1. Satyamjayatu: The Science & Ethics Foundation, Snehatheeram, Kulappully, Shoranur-2 (PO), Kerala-679122, India

Abstract

Aims: We aim to demonstrate why deeming diffusible reactive oxygen species (DROS) as toxic wastes do not afford a comprehensive understanding of cytochrome P450 mediated microsomal xenobiotic metabolism (mXM). Background: Current pharmacokinetic investigations consider reactive oxygen species formed in microsomal reactions as toxic waste products, whereas our works (Manoj et al., 2016) showed that DROS are the reaction mainstay in cytochrome P450 mediated metabolism and that they play significant roles in explaining several unexplained physiologies. Objective: Herein, we strive to detail the thermodynamic and kinetic foundations of murburn precepts of cytochrome P450 mediated drug metabolism. Methodology: Primarily, in silico approaches (using pdb crystal structure files), murburn reaction chemistry logic and thermodynamic calculations to elucidate the new model of CYP-mediated drug metabolism. The theoretical foundations are used to explain experimental observations. Results: We visually elucidate how murburn model better explains- (i) promiscuity of the unique P450-reductase; (ii) prolific activity and inhibitions of CYP3A4; (iii) structure-function correlations of important key CYP2 family isozymes- 2C9, 2D6 and 2E1; and (iv) mutation studies and mechanism-based inactivation of CYPs. Several other miscellaneous aspects of CYP reaction chemistry are also addressed. Conclusion: In the light of our findings that DROS are crucial for explaining reaction outcomes in mXM, approaches for understanding drug-drug interactions and methodologies for lead drug candidates' optimizations should be revisited.

Publisher

Bentham Science Publishers Ltd.

Subject

Clinical Biochemistry,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3