How Zinc-Binding Systems, Expressed by Human Pathogens, Acquire Zinc from the Colonized Host Environment: A Critical Review on Zincophores

Author:

Bellotti Denise1ORCID,Rowińska-Żyrek Magdalena2ORCID,Remelli Maurizio1ORCID

Affiliation:

1. Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy

2. Faculty of Chemistry, University of Wroclaw, ul. F. Joliot-Curie 14, 50-383, Wroclaw, Italy

Abstract

Some transition metals, like manganese, iron, cobalt, nickel, copper and zinc, required for the biosynthesis of metalloenzymes and metalloproteins, are essential micronutrients for the growth and development of pathogenic microorganisms. Among the defenses put in place by the host organism, the so-called “nutritional immunity” consists of reducing the availability of micronutrients and thus “starving” the pathogen. In the case of metals, microorganisms can fight the nutritional immunity in different ways, i.e. by directly recruiting the metal ion or capturing an extracellular metalloprotein or also through the synthesis of specific metallophores which allow importing the metal in the form of a chelate complex. The best known and most studied metallophores are those directed to iron (siderophores), but analogous chelators are also expressed by microorganisms to capture other metals, such as zinc. An efficient zinc recruitment can also be achieved by means of specialized zinc-binding proteins. A deep knowledge of the properties, structure and action mechanisms of extracytoplasmic zinc chelators can be a powerful tool to find out new therapeutic strategies against the antibiotic and/or antifungal resistance. This review aims to collect the knowledge concerning zincophores (small molecules and proteins in charge of zinc acquisition) expressed by bacterial or fungal microorganisms that are pathogenic for the human body.

Funder

COST Action, NECTAR – Network for Equilibria and Chemical Thermodynamics Advanced Research, supported by COST

National Science Centre

University of Ferrara

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3