Removal of Pharmaceutical Contaminants in Wastewater Using Nanomaterials: A Comprehensive Review

Author:

Chauhan Anjali1,Sillu Devendra1,Agnihotri Shekhar1

Affiliation:

1. Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala-147004, Punjab, India

Abstract

Background: The limitless presence of pharmaceutical contaminants in discharged wastewater has emerged as a threat to aquatic species and humans. Their presence in drinking water has although raised substantial concerns, very little is known about the fate and ecological impacts of these pollutants. As a result, these pollutants are inevitably introduced to our food chain at trace concentrations. Unfortunately, the conventional wastewater treatment techniques are unable to treat pharmaceuticals completely with practical limitations. The focus has now been shifted towards nanotechnology for the successful remediation of these persistent pollutants. Thus, the current review specifically focuses on providing readers brief yet sharp insights into applications of various nanomaterials for the removal of pharmaceutical contaminants. Methods: An exhaustive collection of bibliographic database was done with articles having high impact and citations in relevant research domains. An in-depth analysis of screened papers was done through standard tools. Studies were categorized according to the use of nanoscale materials as nano-adsorbents (graphene, carbon nanotubes), nanophotocatalysts (metal, metal oxide), nano-filtration, and ozonation for promising alternative technologies for the efficient removal of recalcitrant contaminants. Results: A total of 365 research articles were selected. The contemporary advancements in the field of nanomaterials for drinking and wastewater treatment have been thoroughly analyzed along with their future perspectives. Conclusion: The recommendations provided in this article will be useful to adopt novel strategies for on-site removal of the emerging contaminants in pharmaceutical effluents and related industries.

Funder

Department of Science and Technology (DST-SERB), Government of India

Publisher

Bentham Science Publishers Ltd.

Subject

Clinical Biochemistry,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3