Survey of Machine Learning Techniques for Prediction of the Isoform Specificity of Cytochrome P450 Substrates

Author:

Xiong Yi1,Qiao Yanhua2,Kihara Daisuke3,Zhang Hui-Yuan1,Zhu Xiaolei2,Wei Dong-Qing1

Affiliation:

1. State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China

2. School of Life Sciences, Anhui University, Hefei, Anhui 230601, China

3. Department of Biological Science, Purdue University, West Lafayette, IN 47907, United States

Abstract

Background:Determination or prediction of the Absorption, Distribution, Metabolism, and Excretion (ADME) properties of drug candidates and drug-induced toxicity plays crucial roles in drug discovery and development. Metabolism is one of the most complicated pharmacokinetic properties to be understood and predicted. However, experimental determination of the substrate binding, selectivity, sites and rates of metabolism is time- and recourse- consuming. In the phase I metabolism of foreign compounds (i.e., most of drugs), cytochrome P450 enzymes play a key role. To help develop drugs with proper ADME properties, computational models are highly desired to predict the ADME properties of drug candidates, particularly for drugs binding to cytochrome P450.Objective:This narrative review aims to briefly summarize machine learning techniques used in the prediction of the cytochrome P450 isoform specificity of drug candidates.Results:Both single-label and multi-label classification methods have demonstrated good performance on modelling and prediction of the isoform specificity of substrates based on their quantitative descriptors.Conclusion:This review provides a guide for researchers to develop machine learning-based methods to predict the cytochrome P450 isoform specificity of drug candidates.

Funder

Shanghai Jiao Tong University School of Medicine

Shanghai Key Laboratory of Intelligent Information Processing

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Clinical Biochemistry,Pharmacology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3