The Kinetic Component in Drug Discovery: Using the Most Basic Pharmacological Concepts to Advance in Selecting Drugs to Combat CNS Diseases

Author:

Franco Rafael1,Castelló Josema1,Canela Enric I.1

Affiliation:

1. Department of Biochemistry and Molecular Biomedicine, Molecular Neurobiology Laboratory, Biology School, University of Barcelona, Barcelona, Spain

Abstract

To reach the central nervous system (CNS), drugs must cross the brain-blood barrier and have appropriate pharmacokinetic/dynamic properties. However, in early drug discovery steps, the selection of lead compounds, for example, those targeting G-protein-coupled receptors (GPCRs), is made according to i) affinity, which is calculated in in vitro equilibrium conditions, and ii) potency, a signal transduction-related parameter, usually quantified at a fixed time-point in a heterologous expression system. This paper argues that kinetics must be considered in the early steps of lead compound selection. While affinity calculation requires the establishment of a ligand-receptor equilibrium, the signal transduction starts as soon as the receptor senses the agonist. Taking cAMP production as an example, the in vitro-measured cytoplasmic levels of this cyclic nucleotide do not depend on equilibrium dissociation constant, KD. Signaling occurs far from the equilibrium and correlates more with the binding rate (kon) than with KD. Furthermore, residence time, a parameter to consider in lead optimization, may significantly vary from in vitro to in vivo conditions. The results are discussed from the perspective of dopaminergic neurotransmission and dopaminereceptor- based drug discovery.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology (medical),Psychiatry and Mental health,Neurology (clinical),Neurology,Pharmacology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3