Targeting Ionotropic Glutamate Receptors in the Treatment of Epilepsy

Author:

Celli Roberta1,Fornai Francesco1

Affiliation:

1. I.R.C.C.S. Neuromed, Pozzilli, Italy

Abstract

Background: A dysfunction in glutamate neurotransmission is critical for seizure. Glutamate is the major excitatory drive in the cerebral cortex, where seizures occur. Glutamate acts via (i) ionotropic (iGlu) receptors, which are ligand-gated ion channels mediating fast excitatory synaptic transmission; and (ii) G proteins coupled metabotropic (mGlu) receptors. Objective: To overview the evidence on the role of iGlu receptors in the onset, duration, and severity of convulsive and non-convulsive seizures to lay the groundwork for novel strategies for drug-resistant epilepsy. Methods: We used PubMed crossed-search for “glutamate receptor and epilepsy” (sorting 3,170 reports), searched for “ionotropic glutamate receptors”, “AMPA receptors”, “NMDA receptors”, “kainate receptors”, “convulsive seizures”, “absence epilepsy”, and selected those papers focusing this Review’s scope. Results: iGlu receptor antagonists inhibit, whereas agonists worsen experimental seizures in various animal species. Clinical development of iGlu receptor antagonists has been limited by the occurrence of adverse effects caused by inhibition of fast excitatory synaptic transmission. To date, only one drug (perampanel) selectively targeting iGlu receptors is marketed for the treatment of focal epilepsy. However, other drugs, such as topiramate and felbamate, inhibit iGlu receptors in addition to other mechanisms. Conclusion: This review is expected to help dissecting those steps induced by iGlu receptors activation, which may be altered to provide antiepileptic efficacy without altering key physiological brain functions, thus improving safety and tolerability of iGlu-receptor directed antiepileptic agents. This effort mostly applies to drug resistant seizures, which impact the quality of life and often lead to status epilepticus, which is a medical urgency.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology (medical),Psychiatry and Mental health,Clinical Neurology,Neurology,Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3