Structure Based Drug Design Approach to Identify Potential SARS-CoV-2 Polymerase Inhibitors

Author:

Negi Preeya1,Prakash Surya1,Patil Vaishali M.1ORCID

Affiliation:

1. Computer-Aided Drug Design Lab, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad,India

Abstract

Aims: The research work aims to apply the current virtual screening approaches for rapid screening of available compounds as inhibitors of the novel coronavirus (COVID-19). Background: The worldwide pandemic, uncontrolled spread, and lack of effective therapeutics demand novel SARS-CoV-2 inhibitory anti-viral agents. Objective: The major objectives of the present work are – i) effective utilization of open-source computer- aided drug design (CADD) tools; ii) to prepare a database according to chemical structure similarity to the reported anti-viral drug, Favipiravir; and iii) to investigate potential inhibitors of the novel coronavirus. Methods: The dataset was prepared based on the chemical structure similarity feature of ChemSpider. The virtual screening was carried out using molecular docking and ADMET properties. For performing molecular docking studies, the standard docking protocol of iGEMDOCK was used. Result: Based on chemical structure similarity search to Favipiravir, a small library of 40 compounds was designed. The docking score and ADMET properties were analyzed to prioritize the compounds. Conclusion: The virtual screening resulted in the identification of potential anti-viral compounds. Among the designed library of compounds based on structural similarity to Favipiravir, 70% of compounds were found to possess docking scores more than that of Favipiravir. The amino acid residues involved in binding at the RNA dependent RNA polymerase (RdRp) were identified. The compounds have shown acceptable ADME properties and are potentially non-toxic. Other: The study has successfully applied the open source CADD tools to investigate novel SARS-CoV-2 polymerase inhibitors.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3