In Silico Modeling of COVID-19 Pandemic Course Differentiation Using the FOD Model

Author:

Roterman Irena1ORCID,Stapor Katarzyna2ORCID,Fabian Piotr2,Konieczny Leszek3

Affiliation:

1. Department of Bioinformatics and Telemedicine, Jagiellonian University, Medical College Medyczna, Kraków, Poland

2. Institute of Automatic, Electronics, Computer Science, Silesian University of Technology, Akademicka Gliwice, Poland

3. Chair of Medical Biochemistry, Jagiellonian University, Medical College, Kopernika, Kraków, Poland

Abstract

Background: The strange and still unclear scenarios of Covid-19 pandemic development have raised the question about the reason for the observed essential state and personal differences concerning the expansion and severity of the infection process. Some custom activities are taken into consideration in an attempt to explain the phenomenon. Alcohol in the diet is suggested in this paper as the possible factor which could explain the observed differentiation. It easily penetrates cells modifying their natural internal environment, and independently influences tissues as the toxic agent being the source of acetyl aldehyde. Objective: The process in which the cell seems to be the most sensitive to altered environmental conditions is the protein folding; in particular, its portion occurring in the endoplasmic reticulum where freshly synthesized polypeptides fold and then are introduced to the cell membrane influencing its property and in particular its fluidity, which is the critical parameter deciding the virus penetration into the cell. Methods: The application of a mathematical model, fuzzy oil drop model FOD, expressing the influence of the environment on the protein folding process shows the mechanism of this influence. Results: The differences between statistical assessment of epidemy in Europe and the Far East, which may be correlated with alcohol consumption, suggest the influence of diet on the status of epidemy in these regions. Conclusion: The protein folding seems to be the process most sensitive to environmental conditions in the cell. The different diet customs, including the use of alcohol, may disturb the folding process, lowering as the result the number of proteins needed for cell membrane stability, thus increasing its fluidity and the cell susceptibility to virus penetration. Observations presented in this paper are based on the initial period of pandemic development and have not been intentionally modified to prevent the influence of additional factors, like government activities or virus mutations.

Funder

Jagiellonian University - Medical College, Kraków, Poland

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3