Redox Sensitive Polysaccharide Based Nanoparticles for Improved Cancer Treatment: A Comprehensive Review

Author:

Ghassami Erfaneh1,Varshosaz Jaleh1,Taymouri Somayeh1

Affiliation:

1. Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran

Abstract

Background: Among the numerous bio-responsive polymeric drug delivery systems developed recently, redox-triggered release of molecular payloads have gained great deal of attention, especially in the field of anticancer drug delivery. In most cases, these systems rely on disulfide bonds located either in the matrix crosslinks, or in auxiliary chains to achieve stimuli-responsive drug release. These bonds keep their stability in extracellular environments, yet, rapidly break by thiol–disulfide exchange reactions in the cytosol, due to the presence of greater levels of glutathione. Polysaccharides are macromolecules with low cost, natural abundance, biocompatibility, biodegradability, appropriate physical and chemical properties, and presence of numerous functional groups which facilitate chemical or physical cross-linking. Methods: With regards to the remarkable advantages of polysaccharides, in the current study, various polysaccharide-based redox-responsive drug delivery systems are reviewed. In most cases the in vitro/in vivo effects of the developed system were also evaluated. Results: Considering the hypoxic and reducing nature of the tumor microenvironment, with several folds higher glutathione levels than the systemic tissues, redox-sensitive polymeric systems could be implemented for tumorspecific drug delivery and the results of the previous researches in this field indicated satisfactory achievements. Conclusion: According to the reviewed papers, the efficiency of diverse redox-responsive polysaccharide-based nanoparticles with therapeutic payloads in cancer chemotherapy could be concluded. Nevertheless, more comprehensive studies are required to understand the exact intracellular and systemic fate of these nano-carriers, as well as their clinical efficacy for cancer treatment.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3