Affiliation:
1. School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil
Abstract
Abstract:
5-Fluorouracil (5-FU) is an antimetabolite drug used for over 70 years as first-line chemotherapy to
treat various types of cancer, such as head, neck, breast, and colorectal cancer. 5-FU acts mainly by inhibiting
thymidylate synthase, thereby interfering with deoxyribonucleic acid (DNA) replication or by 5-FU incorporating
into DNA, causing damage to the sequence of nucleotides. Being analogous to uracil, 5-FU enters cells using
the same transport mechanism, where a is converted into active metabolites such as fluorouridine triphosphate
(FUTP), fluorodeoxyuridine monophosphate (FdUMP), and fluorodeoxyuridine triphosphate (FdUTP).
Currently, there are several nano delivery systems being developed and evaluated at the preclinical level to
overcome existing limitations to 5-FU chemotherapy, including liposomes, polymeric nanoparticles, polymeric
micelles, nanoemulsions, mesoporous silica nanoparticles, and solid lipid nanoparticles. Therefore, it is essential
to choose and develop suitable analytical methods for the quantification of 5-FU and its metabolites (5-
fluorouridine and 5-fluoro-2-deoxyuridine) in pharmaceutical and biological samples. Among the analytical
techniques, chromatographic methods are commonly the most used for the quantification of 5-FU from different
matrices. However, other analytical methods have also been developed for the determination of 5-FU, such
as electrochemical methods, a sensitive, selective, and precise technique, in addition to having a reduced cost.
Here, we first review the physicochemical properties, mechanism of action, and advances in 5-FU nanodelivery
systems. Next, we summarize the current progress of other chromatographic methods described to determine 5-
FU. Lastly, we discuss the advantages of electrochemical methods for the identification and quantification of 5-
FU and its metabolites in pharmaceutical and biological samples.
Funder
São Paulo Research Foundation
National Council for Scientific and Technological Development
Publisher
Bentham Science Publishers Ltd.
Subject
Drug Discovery,Pharmacology