New Ferrocene Formates Bearing Isoxazole Moieties: Synthesis, Characterization, X-ray Crystallography, and Preliminarily Cytotoxicity against A549, HCT116, and MCF-7 Cell Lines

Author:

Lu Canzhong12,Yong Jianping1,Yang Minxue2,Wu Xiaoyuan2

Affiliation:

1. Xiamen Institute of Rare-earth Materials, Chinese Academy of Sciences, Xiamen 361021, China

2. Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China

Abstract

Aims: To develop new anticancer agents based on ferrocene core. Background: Cancer has become the major cause of human death globally. The death caused by cancer mainly focuses on lung cancer, breast cancer, liver cancer, carcinoma of the colon, and rectum. Some small molecular inhibitors have been authorized by FDA for the treatment of cancer and several candidates are in different phases of clinical trials. However, cancer chemotherapy is still highly inadequate. Thus, it is indispensable to develop novel anticancer agents. Objective: Based on the previous good results, twelve novel structures of ferrocene formates bearing isoxazole moiety (3a-3l) were synthesized in this work for the development of anticancer agents. Methods: The target compounds were synthesized using Ferrocenecarboxylic acid and 3-[(R)-substitutedphenyl]- isoxazole-5-methanol catalyzed by DCC and DMAP. The structures of target compounds were characterized by 1H NMR, 13C NMR, MS, HR-MS and XRD. Then, their preliminarily in vitro cytotoxicity against A549, HCT116, and MCF-7 cell lines was evaluated using the MTT method. Results: The results showed that most compounds exhibited moderate cytotoxicity against A549, HCT116, and MCF-7 cell lines compared with the positive control gefitinib. However, (3b, 3c, 3e, 3j, and 3k) simultaneously exhibited stronger inhibitory activity against A549, HCT116, and MCF-7 cell lines, which can be regarded as promising metal-based lead compounds for the development of anticancer agents. Conclusion: In this work, twelve new structures of ferrocene derivatives containing isozaole moiety were synthesized and their cytotoxicity against 549, HCT116, and MCF-7 cell lines was evaluated. (3b, 3c, 3e, 3j, and 3k) simultaneously exhibited stronger inhibitory activity towards A549, HCT116, and MCF-7 cell lines, which can be regarded as promising metal-based lead compounds for the development of anticancer agents.

Funder

National Natural Science Foundation of China

Science and Technology Planning Program of Xiamen

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3