Luliconazole Topical Dermal Drug Delivery for Superficial Fungal Infections: Penetration Hurdles and Role of Functional Nanomaterials

Author:

Babu Chanti Katta1,Shubhra 2,Ghouse Shaik Mahammad3,Singh Pankaj Kumar1,Khatri Dharmendra Kumar4,Nanduri Srinivas3,Singh Shashi Bala4,Madan Jitender1

Affiliation:

1. Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India

2. Department of Pharmacy, Birla Institute of Technology and Science, Hyderabad, Telangana, India

3. Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India

4. Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India

Abstract

Abstract: Luliconazole is the first and only anti-fungal agent approved for the short-term treatment of superficial fungal infections. However, commercially available conventional topical dermal drug delivery cargo of luliconazole is associated with certain limitations like lower skin permeation and shorter skin retention of drug. Therefore, present review is an attempt to decode the penetration hurdles in luliconazole topical dermal drug delivery. Moreover, we also summarized the activity of functional nanomaterials based drug delivery systems employed by the scientific fraternity to improve luliconazole efficacy in superficial fungal infections on case-to-case basis. In addition, efforts have also been made to unbox the critically acclaimed mechanism of action of luliconazole against fungal cells. Under the framework of future prospects, we have analyzed the combination of luliconazole with isoquercetin using in-silico docking technique for offering synergistic antifungal activity. Isoquercetin exhibited a good affinity for superoxide dismutase (SOD), a fungal target owing to the formation of hydrogen bond with Glu132, Glu133, and Arg143, in addition to few hydrophobic interactions. On the other hand, luliconazole inhibited lanosterol-14α-demethylase and consequently blocked ergosterol. In addition, nanotechnology and artificial neural network (ANN) derived integrated drug delivery systems may also be explored for augmenting the luliconazole therapeutic efficacy in topical fungal infections. Synergy of ANN models along with topical nanoscaled drug delivery may help to achieve critical quality attributes (CQA) to gain commercial success.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3