Ruscogenin Alleviates Deep Venous Thrombosis and Pulmonary Embolism Induced by Inferior Vena Cava Stenosis Inhibiting MEK/ERK/Egr-1/TF Signaling Pathway in Mice

Author:

Zhang Yuanyuan1,Kou Junping1,Dai Yujie1,Zhou Qianliu1,Liu Yuankai1,Chen Xiaojun1,Li Fang1,Yu Boyang1

Affiliation:

1. State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China

Abstract

Background: Ruscogenin (RUS) has anti-inflammatory and antithrombotic effects, while its potential effects on deep venous thrombosis (DVT) and pulmonary embolism (PE) remain unclear. Objective: We aimed to elucidate the effects of RUS on DVT and PE induced by the inferior vena cava stenosis (IVCS) model and investigate the underlying mechanism. Methods: Male C57/BL6 mice were used to explore whether IVCS model could be complicated with deep venous thrombosis and pulmonary embolism. Then, effects of RUS on DVT and PE related inflammatory factors and coagulation were examined using H&E staining, ELISA, and real-time PCR. Western blot analysis was used to examine the effects of RUS on MEK/ERK/Egr-1/TF signaling pathway in PE. Results: IVCS model induced DVT and complied with PE 48 h after surgery. Administration of RUS (0.01, 0.1, 1 mg/kg) inhibited DVT, decreased biomarker D-Dimer, cardiac troponin I, N-Terminal probrain natriuretic peptide in plasma to ameliorate PE induced by IVCS model. Meanwhile, RUS reduced tissue factor and fibrinogen content of lung tissue, inhibited P-selectin and C-reactive protein activity in plasma, and suppressed the expressions of interleukin-6 and interleukin-1β in mice. Furthermore, RUS suppressed the phosphorylation of ERK1/2 and MEK1/2, decreasing the expressions of Egr-1 and TF in the lung. Conclusion: IVCS model contributed to the development of DVT and PE in mice and was associated with increased inflammation. RUS showed therapeutic effects by inhibiting inflammation as well as suppressing the activation of MEK/ERK/Egr-1/TF signaling pathway.

Funder

“Double First-Class” University Project

Fundamental Research Funds for the Central Universities

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3