Marine Cellulases and their Biotechnological Significance from Industrial Perspectives

Author:

Homaei Ahmad1,Navvabi Azita1,Pletschke Brett I.2,Navvabi Nazila3,Kim Se-Kwon4

Affiliation:

1. Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran

2. Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa

3. Department of Tumor Biology and Immunotherapy, Molecular Biology of Cancer, Institute of Experimental Medicine, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic

4. Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan, Seoul 426-791, Republic of Korea

Abstract

Abstract: Marine microorganisms represent virtually unlimited sources of novel biological compounds and can survive extreme conditions. Cellulases, a group of enzymes that are able to degrade cellulosic materials, are in high demand in various industrial and biotechnological applications, such as in the medical and pharmaceutical industries, food, fuel, agriculture, and single-cell protein, and as probiotics in aquaculture. The cellulosic biopolymer is a renewable resource and is a linearly arranged polysaccharide of glucose, with repeating units of disaccharide connected via β-1,4-glycosidic bonds, which are broken down by cellulase. A great deal of biodiversity resides in the ocean, and marine systems produce a wide range of distinct, new bioactive compounds that remain available but dormant for many years. The marine environment is filled with biomass from known and unknown vertebrates and invertebrate microorganisms, with much potential for use in medicine and biotechnology. Hence, complex polysaccharides derived from marine sources are a rich resource of microorganisms equipped with enzymes for polysaccharides degradation. Marine cellulases’ extracts from the isolates are tested for their functional role in degrading seaweed and modifying wastes to low molecular fragments. They purify and renew environments by eliminating possible feedstocks of pollution. This review aims to examine the various types of marine cellulase producers and assess the ability of these microorganisms to produce these enzymes and their subsequent biotechnological applications.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3