Dysregulation of Angiopoietin-like-4 Associated with Hyperlipidemia-induced Renal Injury by AMPK/ACC Pathway

Author:

Liu Qingquan1,Lv YongMan12,Qiu Wenhui13,Huang Luyang4,Li YueQiang1

Affiliation:

1. Department of Nephrology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China

2. Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China

3. Department of Nephrology, Wuhan No. 1 Hospital, No. 215, Zhong Shan Avenue, Wuhan, 430022, China

4. Department of Anesthesiology, Hanyang Branch, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China

Abstract

Background: Angiopoietin-like protein 4 (Angptl4) is a glycoprotein that is involved in regulating lipid metabolism, which has been indicated as a link between hypertriglyceridemia and albuminuria in glomerulonephropathy. Deregulated lipid metabolism is increasingly recognized as an important risk factor of glomerulonephropathy. This study aimed to investigate the Angptl4 expression in renal tissue and podocyte under hyperlipidemia conditions and explore the potential molecular mechanisms. Objective: The role of Angptl4 in hyperlipidemia-induced glomerular disease and the detailed underlying mechanisms are unclear. This study sought new insights into this issue. Methods: We measured Angptl4 levels in the plasma and urine from patients with hyperlipidemia and healthy people. Rats were fed a high fat diet (HFD) to induce dyslipidemia model and the human podocytes were stimulated by palmitic acid as in vivo and in vitro experiments. The podocytes injury and the Angptl4 level in renal tissues were evaluated. Furthermore, the mechanism of Angptl4 on podocytes injury was investigated. Results: The urinary Angptl4 level was gradually upregulated in both patients with hyperlipidaemia and high fat-diet-induced rats. HFD rats showed increased 24h-urinary protein and glomerular tuft area at week 12. The levels of nephrin and WT-1 were down-regulated, but the Angptl4 levels were markedly upregulated on the glomerular of rats on HFD. In the human podocytes, lipid accumulation accompanied by increases of Angptl4, but the expression of nephrin, WT-1, p-AMPKα and p-ACC was decreased after palmitic acid treatment. However, this injury effect was mediated by the aminoimidazole-4-carboxamide-1β-D-ribofuranoside (AICAR), activator of the low energy sensor AMPK/ACC signaling. Conclusion: This study was the first of its kind to show that podocyte damage induced by dyslipidemia could be associated with upregulated Angptl4 and that patients with hyperlipidemia might have relatively high urinary Angptl4 expression. The dysregulation of Angptl4 in the podocytes under hyperlipidemia is possibly carried out through AMPK/ACC signaling pathway.

Funder

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3