Preparation, Characterization, and Molecular Dynamic Simulation of Novel Coenzyme Q10 Loaded Nanostructured Lipid Carriers

Author:

Atapour-Mashhad Hoda12,Nejabat Mojgan3ORCID,Hadizadeh Farzin4,Hoseinsalari Afsaneh5,Golmohammadzadeh Shiva12

Affiliation:

1. Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

2. Department of Pharmaceutics, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

3. Department of Medicinal Chemistry, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

4. Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran

5. Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

Abstract

Background: Research proved that coenzyme Q10-loaded NLC effectively removes skin wrinkles, therefore, such a formulation with good characteristics is still the research goal. Objective: This study investigated the effect of solid lipids and surfactant type on the physical characteristics of Q10-NLC. We aimed to achieve the optimum formulation for producing NLC with long-term stability and high Entrapment efficiency (E.E.) %. We compared the experimental results with the output of the Molecular dynamic (M.D.) simulations. Methods: To develop Q10-NLC, various solid lipids, MCT oil, and surfactants were employed. The formulations were prepared by high-shear homogenization and ultrasound methods. Stability studies were carried out 1,3, and 6 months at 4, 25, and 40°C. The optimized NLC formulations were characterized by photon correlation spectroscopy (PCS), Transmission electron microscopy (TEM), Differential scanning calorimetry (DSC), and Fourier transform infrared (FT-IR). E.E. % was determined by HPLC analysis. Atomistic M.D. simulations of two model systems were performed to gain insights into the self-assembled process of co-Q10 with other formulation components. Results: Statistical analysis (Two-way ANOVA) revealed that solid lipid and surfactant factors had a significant influence on particle size, PDI, and zeta potential (***p < 0.0001). According to the results, F1 and F6 formulations had desirable surface characterizations, physicochemical stability, and high E.E.%. The atomistic M.D. simulations confirmed that the F1 system (best) was more stable than the F31 system (worst). Conclusion: The solid lipids: tripalmitin and compritol, stabilized with 4% tween 80 and 1% span 80, have produced stable NLC with the best surface characteristics that could be a promising formulation for the delivery of Q10. Atomistic M.D. simulation has confirmed the stability of F1 in comparison to F31.

Funder

Mashhad University of Medical Sciences

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3