In silico Mutagenesis and Modeling of Decoy Peptides Targeting CIB1 to Obscure its Role in Triple-negative Breast Cancer Progression

Author:

Shahab Muhammad1,Liang Chaoqun1,Duan Xiuyuan1,Zheng Guojun1,Wadood Abdul2

Affiliation:

1. Department of Bioengineering, State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China

2. Department of Biochemistry, Computational Medicinal Chemistry Laboratory, UCSS, Abdul Wali Khan University, Mardan, Pakistan

Abstract

Background:: Cancer is recognized globally as the second-most dominating and leading cause of morbidities. Breast cancer is the most often diagnosed disease in women and one of the leading causes of cancer mortality. In women, 287,850, and in males, 2710 cases were reported in 2022. Approximately 10–20% of all new cases of breast cancer diagnosed in the United States in 2017 were triple-negative breast cancers (TNBCs), which lack the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Objective:: This study aims to adopt different strategies for targeting calcium integrin-binding protein 1 by computer-aided drug design methods. Our results showed that the top four selected peptides interact with CIB1 more strongly than the reference peptide and restore normal cell function by engaging CIB1. Our binding affinity analyses explore an innovative approach to planning a new peptide to inhibit triple-negative breast cancer. Methods:: Molecular dynamic simulation of the CIB1-UNC10245092 interaction highlights the potential peptide inhibitors through In-silico mutagenesis and designs novel peptide inhibitors from the reference peptide (UNC10245092) through residue scan methodology. Results:: The top four designed peptides (based on binding free energy) were subjected to molecular dynamics simulations using AMBER to evaluate stability. Conclusion:: Our results indicate that among the top five selected peptides, the mutant 2nd mutants have more potential to inhibit CIB1 than the reference peptide (UNC10245092) and have the potency to prevent or restore the tumor suppressor function of UNC10245092.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

Reference24 articles.

1. Blows F.M.; Driver K.E.; Schmidt M.K.; Broeks A.; van Leeuwen F.E.; Wesseling J.; Cheang M.C.; Gelmon K.; Nielsen T.O.; Blomqvist C.; Heikkilä P.; Heikkinen T.; Nevanlinna H.; Akslen L.A.; Bégin L.R.; Foulkes W.D.; Couch F.J.; Wang X.; Cafourek V.; Olson J.E.; Baglietto L.; Giles G.G.; Severi G.; McLean C.A.; Southey M.C.; Rakha E.; Green A.R.; Ellis I.O.; Sherman M.E.; Lissowska J.; Anderson W.F.; Cox A.; Cross S.S.; Reed M.W.R.; Provenzano E.; Dawson S.J.; Dunning A.M.; Humphreys M.; Easton D.F.; García-Closas M.; Caldas C.; Pharoah P.D.; Huntsman D.; Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: A collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med 2010,7(5),e1000279

2. Lehmann B.D.; Bauer J.A.; Chen X.; Sanders M.E.; Chakravarthy A.B.; Shyr Y.; Pietenpol J.A.; Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 2011,121(7),2750-2767

3. Dent R.; Trudeau M.; Pritchard K.I.; Hanna W.M.; Kahn H.K.; Sawka C.A.; Lickley L.A.; Rawlinson E.; Sun P.; Narod S.A.; Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin Cancer Res 2007,13(15),4429-4434

4. Lee A.; Djamgoz M.B.A.; Triple negative breast cancer: Emerging therapeutic modalities and novel combination therapies. Cancer Treat Rev 2018,62,110-122

5. Mirzoeva O.K.; Das D.; Heiser L.M.; Bhattacharya S.; Siwak D.; Gendelman R.; Bayani N.; Wang N.J.; Neve R.M.; Guan Y.; Hu Z.; Knight Z.; Feiler H.S.; Gascard P.; Parvin B.; Spellman P.T.; Shokat K.M.; Wyrobek A.J.; Bissell M.J.; McCormick F.; Kuo W.L.; Mills G.B.; Gray J.W.; Korn W.M.; Basal subtype and MAPK/ERK kinase (MEK)-phosphoinositide 3-kinase feedback signaling determine susceptibility of breast cancer cells to MEK inhibition. Cancer Res 2009,69(2),565-572

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3