Development and Validation of a Simple, Fast, and Accessible HPLC-UV Method for Cannabinoids Determination in Cannabis sativa L. Extracts and Medicinal Oils

Author:

Silva Sofrás Fresia Melina1,Alonso Rosario1,Retta Daiana Sabrina12,Di Leo Lira Paola12,Desimone Martin Federico13ORCID,van Baren Catalina María12

Affiliation:

1. Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco [IQUIMEFA], CONICET - Universidad de Buenos Aires, Junín 956, C.A. de Buenos Aires, Argentina

2. Departamento de Farmacología, Cátedra de Farmacognosia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C.A. de Buenos Aires, Argentina

3. Departamento de Ciencias Químicas, Cátedra de Química Analítica Instrumental, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C.A. de Buenos Aires, Argentina

Abstract

Introduction: Cannabis sativa L. is a well-recognized medicinal plant. Cannabis regulations in Argentina are insufficient to solve the problem of patient access to full-spectrum cannabis-based products. So, the market of artisanal products with unknown quality and dosage of cannabinoids is increasing, and so is the local demand and need for analyzing these products. However, much of the latest validated methodologies for cannabinoid quantification include expensive instrumentation that is not always available in laboratories of health institutions in Argentina. Methods: The aim of this work was to develop and validate a simple and rapid HPLC-UV method for the identification and quantification of principal cannabinoids in cannabis resins, inflorescences, and medicinal oils using standard HPLC equipment. The cannabinoids selected for validation were cannabidiol acid (CBDA), cannabigerol (CBG), cannabidiol (CBD), cannabinol (CBN), delta-9-tetrahydrocannabinol (Δ9-THC), cannabichromene (CBC), and tetrahydrocannabinol acid (THCA). A method for the simultaneous identification and quantification of these 7 main cannabinoids was developed and then validated. Some data parameters were comparable to other reports with more sophisticated analytical instruments for the analysis of cannabis. The assessed limits of detection and the limits of quantitation ranged from 0.9 to 3.66 μg/mL and 2.78 to 11.09 μg/mL, respectively. The concentration-response relationship of the method indicated a linear relationship between the concentration and peak area with R2 values of > 0.99 for all 7 cannabinoids. Results: The relative standard deviation (RSD%) varied from 2.34 to 4.82 for intraday repeatability and from 1.16 to 3.15 for interday repeatability. The percentage of recovery values was between 94 to 115% (resins) and 80 to 103% (inflorescence extract). The cannabis industry is growing rapidly, and there is a need for reliable testing methods to ensure the safety and efficacy of cannabis products. In addition, current methods for cannabinoid analysis are often time-consuming and expensive, while the HPLC-UV method herein reported is a simple, rapid, accurate, and cost-effective alternative for the analysis of cannabinoids in cannabis resins, inflorescences, and medicinal oils. Conclusion: This method will be proposed to be included in the Cannabis sativa L. monograph of the Argentine Pharmacopoeia.

Funder

CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3