Identification of 2-Fluoropalmitic Acid as a Potential Therapeutic Agent Against Glioblastoma

Author:

Jiapaer Shabierjiang1,Furuta Takuya2ORCID,Dong Yu3,Kitabayashi Tomohiro4,Sabit Hemragul1,Zhang Jiakang1,Zhang Guangtao1,Tanaka Shingo1,Kobayashi Masahiko5,Hirao Atsushi5ORCID,Nakada Mitsutoshi1ORCID

Affiliation:

1. Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan

2. Department of Pathology, Kurume University, Kurume, Japan

3. Shenzhen SAMII Medical Center, Shenzhen, Guangdong Province, China

4. Department of Neurosurgery, Fukui Prefectural Hospital, Fukui, Japan

5. Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan

Abstract

Background: Glioblastomas (GBMs) are aggressive malignant brain tumors. Although chemotherapy with temozolomide (TMZ) can extend patient survival, most patients eventually demonstrate resistance. Therefore, novel therapeutic agents that overcome TMZ chemoresistance are required to improve patient outcomes. Purpose: Drug screening is an efficient method to find new therapeutic agents from existing drugs. In this study, we explored a novel anti-glioma agent by drug screening and analyzed its function with respect to GBM treatment for future clinical applications. Methods: Drug libraries containing 1,301 diverse chemical compounds were screened against two glioma stem cell (GSC) lines for drug candidate selection. The effect of selected agents on GSCs and glioma was estimated through viability, proliferation, sphere formation, and invasion assays. Combination therapy was performed to assess its ability to enhance TMZ cytotoxicity against GBM. To clarify the mechanism of action, we performed methylation-specific polymerase chain reaction, gelatin zymography, and western blot analysis. Results: The acyl-CoA synthetase inhibitor 2-fluoropalmitic acid (2-FPA) was selected as a candidate anti-glioma agent. 2-FPA suppressed the viability and stem-like phenotype of GSCs. It also inhibited proliferation and invasion of glioma cell lines. Combination therapy of 2-FPA with TMZ synergistically enhanced the efficacy of TMZ. 2-FPA suppressed the expression of phosphor-ERK, CD133, and SOX-2; reduced MMP-2 activity; and increased methylation of the MGMT promoter. Conclusion: 2-FPA was identified as a potential therapeutic agent against GBM. To extend these findings, physiological studies are required to examine the efficacy of 2-FPA against GBM in vivo.

Funder

JSPS KAKENHI

Otsuka Toshimi Scholarship Foundation

Princess Takamatsu Cancer Research Fund

Kobayashi International Scholarship Foundation

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3