Affiliation:
1. Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut, Kerala-673 008, India
2. National Centre for Biological Science, Bengaluru, India
Abstract
Background:
Toll like receptors (TLRs) are a group of transmembrane receptors belonging to the
broad class pattern recognition receptors (PRR), involved in recognition of Pathogen Associated Molecular Patterns
(PAMPs) thereby inducing an immune response. Apart from these exogenous PAMPs, numerous endogenous
PAMPs are also ligands for various TLRs thereby activating the TLR dependent immune response, subsequently
leading to the onset of an inflammatory response. Prolonged activation of TLR by these endogenous
PAMPs leads to chronic inflammatory insults to the body and which in turn alters the proliferative patterns of the
cells, which ultimately leads to the development of cancer.
Objectives:
The present review aims to provide a detailed outline of the differential roles of various TLRs in
cancer and the possible use of them as a therapeutic target.
Methods:
Data were collected from PubMed/Sciencedirect/Web of Science database and sorted; the latest literature
on TLRs was incorporated in the review.
Results:
Among the different TLRs, few are reported to be anti-neoplastic, which controls the cell growth and
multiplication in response to the endogenous signals. On the contrary, numerous studies have reported the procarcinogenic
potentials of TLRs. Hence, TLRs have emerged as a potential target for the prevention and treatment
of various types of cancers. Several molecules, such as monoclonal antibodies, small molecule inhibitors and
natural products have shown promising anticancer potential by effectively modulating the TLR signalling.
Conclusion:
Toll-like receptors play vital roles in the process of carcinogenesis, hence TLR targeting is a promising
approach for cancer prevention.
Funder
Rashtriya Uchchatar Shiksha Abhiyan (RUSA), Ministry of Human Resource Development India
Publisher
Bentham Science Publishers Ltd.
Subject
Drug Discovery,Pharmacology
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献