Lipid Nanoparticles as a Skin Wound Healing Drug Delivery System: Discoveries and Advances

Author:

de Souza Myla Lôbo1ORCID,dos Santos Widson Michael1ORCID,de Sousa André Luiz Moreira Domingues1ORCID,de Albuquerque Wanderley Sales Victor1ORCID,Nóbrega Fernanda Pontes1ORCID,de Oliveira Marcos Victor Gregorio1ORCID,Rolim-Neto Pedro José1ORCID

Affiliation:

1. Laboratory of Drug Technology, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil

Abstract

Chronic wounds are a remarkable cause of morbidity, requiring long-time treatments with a significant impact on the quality of life and high costs for public health. Although there are a variety of topical skin preparations commercially available, they have several limitations that frequently impair wound healing, such as drug instability, toxicity, limited time of action and ineffective skin permeation. In recent years, researchers have focused on the development of new effective treatments for wound healing and shown frequent interest in nanometric drug delivery systems to overcome such obstacles. In dermatology, lipid nanoparticles (LNPs) have received great attention from researchers due to their great functionalities, greater adhesion to the skin and film formation, enabling the hydration and maintenance of skin integrity, as well as present a more effective penetration through the skin barrier. This review provides an update on topical formulations based on Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs) as wound healing treatments. Both SLNs and NLCs are able to increase solubility and stability of active pharmaceutical ingredients and increase skin penetration compared to the free drugs. Additionally, SLNs and NLCs can increase pharmacological activity, increase the release profile of the drugs, promote synergistic effects and improve the sensory properties of the final formulation. Topical dosage forms containing nanoparticles have been extensively evaluated for wound healing activity, mainly the dressings, films and scaffolds. Therefore, lipid nanoparticles have contributed in improving wound healing therapies when incorporated into other dosage forms with better efficacy and lesser adverse effects than conventional formulations.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3