Polymer-Lipid Hybrid Nanoparticles: A Next-Generation Nanocarrier for Targeted Treatment of Solid Tumors

Author:

Rizwanullah Md.1,Alam Meraj1,Harshita 2,Mir Showkat R.3,Rizvi Mohd. M.A.4,Amin Saima1

Affiliation:

1. Formulation Research Lab, Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi-110062, India

2. Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia

3. Phytopharmaceutical Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi-110062, India

4. Genome Biology Lab, Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi-110025, India

Abstract

: At present, cancer is the most deadly disease and one of the most common causes of death worldwide providing different obstacles to chemotherapy including non-specific biodistribution of chemotherapeutic drugs, dose-related adverse effects, development of metastasis and chemoresistance. Nanoparticle-based targeted delivery of chemotherapeutics gained enormous attention in the treatment of solid tumors as they provide many significant advantages including prolonged drug release, enhanced systemic half-life, decreased toxicity and targeted drug delivery. Polymer–lipid hybrid nanoparticles (PLHNPs) are the most effective nanoplatform that develop from building blocks of polymers and lipids. PLHNPs combine the unique advantages of both lipid-based nanoparticles as well as polymeric nanoparticles. PLHNPs integrate biocompatible polymers and biomimetic lipids in their architecture, which imparts PLHNPs with wide versatility for delivering chemotherapeutic drugs of different physicochemical characteristics to their target site of action. The hybrid architecture of PLHNPs provides many exceptional advantages such as small particle size, encapsulation of more than one anticancer drugs, high drug loading capacity and modified drug release profile. Furthermore, the surface decoration of PLHNPs improves the therapeutic potential of the chemotherapeutic drug by selective targeting of tumor tissue and reduces the side effects by decreasing non-specific biodistribution. This review highlights the challenges in the treatment of solid tumors by using nanoparticles system, rationale and targeting strategies of PLHNPs in the targeted treatment of solid tumors, and current progress of PLHNPs in the management of different types of solid tumors.

Funder

Council of Scientific and Industrial Research (CSIR), Ministry of Science and Technology, Govt. of India

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3