Colloidal Nanocarriers as Versatile Targeted Delivery Systems for Cervical Cancer

Author:

Sugumaran Abimanyu1ORCID,Mathialagan Vishali1

Affiliation:

1. Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, India

Abstract

Background: The second most common malignant cancer of the uterus is cervical cancer, which is present worldwide, has a rising death rate and is predominant in developing countries. Different classes of anticancer agents are used to treat cervical carcinoma. The use of these agents results in severe untoward side-effects, toxicity, and multidrug resistance (MDR) with higher chances of recurrence and spread beyond the pelvic region. Moreover, the resulting clinical outcome remains very poor even after surgical procedures and treatment with conventional chemotherapy. Because of the nonspecificity of their use, the agents wipe out both cancerous and normal tissues. Colloidal nano dispersions have now been focusing on site-specific delivery for cervical cancer, and there has been much advancement. Methods: This review aims to highlight the problems in the current treatment of cervical cancer and explore the potential of colloidal nanocarriers for selective delivery of anticancer drugs using available literature. Results: In this study, we surveyed the role and potential of different colloidal nanocarriers in cervical cancer, such as nanoemulsion, nanodispersions, polymeric nanoparticles, and metallic nanoparticles and photothermal and photodynamic therapy. We found significant advancement in colloidal nanocarrier-based cervical cancer treatment. Conclusion: Cervical cancer-targeted treatment with colloidal nanocarriers would hopefully result in minimal toxic side effects, reduced dosage frequency, and lower MDR incidence and enhance the patient survival rates. The future direction of the study should be focused more on the regulatory barrier of nanocarriers based on clinical outcomes for cervical cancer targeting with cost-effective analysis.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3