Cinnamyl Sulfonamide Hydroxamate Derivatives Inhibited LPS-Stimulated NF-kB Expression in RAW 264.7 Cells In Vitro and Mitigated Experimental Colitis in Wistar Rats In Vivo

Author:

Joshi Mit1,Reddy Neetinkumar D.1,Kumar Nitesh1,Sumalatha Suhani2,Chamallamudi Mallikarjuna Rao1

Affiliation:

1. Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India

2. Department of Anatomy, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India

Abstract

Background: Histone deacetylase (HDAC) inhibition has been found to be effective in the treatment of inflammatory bowel disease. Previous studies have reported that Cinnamyl sulfonamide hydroxamate derivatives possess non-selective HDAC inhibition. Objective: The present study was designed to screen three selected Cinnamyl sulfonamide hydroxamate derivatives, NMJ-1, NMJ-2, and NMJ3, for in vitro anti-inflammatory response by assessing the expression of pNF-κB in lipopolysaccharide (LPS)-induced inflammatory changes on RAW 264.7 cells, and in vivo anti-inflammatory response in acetic acid (AA) and 2.4-dinitrochlorobenzene (DNCB)-induced colitis models in Wistar rats. Method: AA-induced colitis was produced in Wistar rats by intra-colonic administration of 1 ml AA. DNCBinduced colitis was produced by spraying 250 μL DNCB in acetone (20g/L) on the nape of the rats for 14 days, followed by the intracolonic administration on day 15. Drugs were administered for three days after the induction of colitis. Results: In vitro anti-inflammatory effect was observed by NMJ1 and NMJ2 through a significant decrease in pNF-κB overexpression-induced by LPS. Similar effect was observed in anti-colitis response by NMJ2 in both models by reversing the colitis-induced changes in length, weight, anti-oxidant profile and histopathology of the colon. Conclusion: NMJ2 was found to be most effective among the tested compounds as an anti-inflammatory agent in both in vitro and in vivo inflammatory studies.

Funder

Science and Engineering Research Board

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3