Adhesive Drug Delivery Systems Based on Polyelectrolyte Complex Nanoparticles (PEC NP) for Bone Healing

Author:

Muller Martin1,Vehlow David1,Torger Bernhard1,Urban Birgit1,Woltmann Beatrice2,Hempel Ute2

Affiliation:

1. Leibniz-Institut fur Polymerforschung Dresden e.V., Abteilung Polyelektrolyte und Dispersionen, Hohe Straße 6, D-01069 Dresden, Germany

2. Technische Universitat Dresden, Medizinische Fakultat Carl Gustav Carus, Institut fur Physiologische Chemie, 01307 Dresden, Germany

Abstract

Background: In this contribution an overview is given on own work concerning drug loaded Polyelectrolyte Complex (PEC) Nanoparticles (NP) used to functionalize Bone Substitute Materials (BSM) for the therapy of bone defects associated with systemic bone diseases. In this context, drug loaded PEC NP have certain advantages, which are exemplarily summarized herein. Methods: Concerning preparative methods PEC NP were fabricated by controlled mixing of polycation and polyanion solutions and integration of charged drugs during and after mixing. Control was taken on the stoichiometric ratio related to cationic and anionic repeating units, which was chosen close to zero for the final applied PEC NP. Concerning analytical methods a couple of physical-chemical methods were applied like colloid titration, Dynamic Light Scattering (DLS), Scanning Force Microscopy (SFM), Fourier Transform infrared (FTIR) spectroscopy, Ultraviolet-Visible (UV-VIS) and Circular Dichroism (CD) spectroscopy to characterize colloid stability, adhesiveness, drug loading and release of PEC NP. Moreover, standard biochemical and microbiological assays were applied. Conclusion: Drug loaded PEC NP consist of oppositely charged biorelated Polyelectrolytes (PEL) like ionic polysaccharides or ionic polypeptides and also synthetic PEL, which are mixed and processed in aqueous media. At first, freshly prepared drug/PEC NP exhibit time dependent colloidal stability in the range of weeks and months, which enables and simplifies storage, transport and application in the medical field. Secondly, after deposition and drying of drug/PEC NP a local wet adhesive PEC matrix at the BSM remains in contact to relevant aqueous media (e.g. buffer, cell culture medium), which minimizes asepsis, systemic toxicity, immune or inflammatory reaction. Thirdly, cell compatible PEC NP coatings were identified, which showed only minimal effects on various relevant bone related cells due to biorelateness, complexation, local confinement and low surface area. Fourthly, PEC NP elute drugs for bone healing like bisphosphonates, antibiotics and growth factors (e.g. bone morphogenetic proteins) in delayed and sustained manner. Moreover, the onset of elution could be triggered by thermoresponsive PEL via temperature increase giving clinicians a tool into hand allowing spatiotemporal drug release on demand. Finally, drug/PEC NP could be integrated into commercial or still developed allotropic stabilizing or defect filling BSM systems.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3