Convolutional Neural Networks for ATC Classification

Author:

Lumini Alessandra1,Nanni Loris2

Affiliation:

1. DISI, Universita di Bologna, Campus di Cesena, Via Macchiavelli, 47521 Cesena, Italy

2. DEI - University of Padova, Via Gradenigo, 6 - 35131- Padova, Italy

Abstract

Background: Anatomical Therapeutic Chemical (ATC) classification of unknown compound has raised high significance for both drug development and basic research. The ATC system is a multi-label classification system proposed by the World Health Organization (WHO), which categorizes drugs into classes according to their therapeutic effects and characteristics. This system comprises five levels and includes several classes in each level; the first level includes 14 main overlapping classes. The ATC classification system simultaneously considers anatomical distribution, therapeutic effects, and chemical characteristics, the prediction for an unknown compound of its ATC classes is an essential problem, since such a prediction could be used to deduce not only a compound’s possible active ingredients but also its therapeutic, pharmacological, and chemical properties. Nevertheless, the problem of automatic prediction is very challenging due to the high variability of the samples and the presence of overlapping among classes, resulting in multiple predictions and making machine learning extremely difficult. Methods: In this paper, we propose a multi-label classifier system based on deep learned features to infer the ATC classification. The system is based on a 2D representation of the samples: first a 1D feature vector is obtained extracting information about a compound’s chemical-chemical interaction and its structural and fingerprint similarities to other compounds belonging to the different ATC classes, then the original 1D feature vector is reshaped to obtain a 2D matrix representation of the compound. Finally, a convolutional neural network (CNN) is trained and used as a feature extractor. Two general purpose classifiers designed for multi-label classification are trained using the deep learned features and resulting scores are fused by the average rule. Results: Experimental evaluation based on rigorous cross-validation demonstrates the superior prediction quality of this method compared to other state-of-the-art approaches developed for this problem. Conclusion: Extensive experiments demonstrate that the new predictor, based on CNN, outperforms other existing predictors in the literature in almost all the five metrics used to examine the performance for multi-label systems, particularly in the “absolute true” rate and the “absolute false” rate, the two most significant indexes. Matlab code will be available at https://github.com/LorisNanni.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3