Preparation of Cationic Lipid-coated Ultrasound Contrast Agents and Noninvasive Gene Transfection Via Ultrasound-targeted Microbubble Destruction

Author:

Yang Feng1,Li Yue1,Liufu Chun1,Wang Yi1,Chen ZhiYi1

Affiliation:

1. Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, The Liwan Hospital of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510000, China

Abstract

Purpose: Ultrasound contrast agents involving a therapeutic drug applied during enhanced imaging can be used for targeted therapy. The preparation of contrast agents is a precondition and basis for the use of multifunctional contrast agents in molecular imaging. Methods: This study uses thin-film hydration-mechanical vibration to carry out the preliminary preparation of a cationic contrast agent (CCA); characterizes the particle diameter, potential, distribution, and concentration of the agents; and optimizes the factors affecting the preparation of the agents. Results: This study found that thin-film hydration-mechanical vibration methods offer a better preparation effectiveness and achieve smaller particle diameters and more even distributions, as well as give better imaging performance. Different concentrations of CCA and plasmid and different gene transfection methods can produce different degrees of sonoporation to achieve optimal transfection efficiency. Ultrasound parameters have a great influence on transfection efficiency and plasmid integrity. A previous study confirmed that the ultrasound parameters of 1 MHz, 1 W/cm2, a duty cycle controller (DC) of 20%, and irradiation for 1 min can well deliver genes to tumor cells, with little impact on cell survival. Conclusion: Our findings indicate that ultrasound-targeted microbubble destruction (UTMD)-mediated CCA destruction facilitates gene transfection and may represent an effective gene delivery method for cervical cancer therapy.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3