Extracellular Vesicles as Drug Delivery Systems - Methods of Production and Potential Therapeutic Applications

Author:

Surman Magdalena1,Drożdż Anna2,Stępień Ewa2,Przybyło Małgorzata1

Affiliation:

1. Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland

2. Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland

Abstract

Drug delivery systems are created to achieve the desired therapeutic effect of a specific pharmaceutical compound. Numerous drawbacks and side effects such as unfavorable pharmacokinetics, lack of tissue selectivity, immunogenicity, increased systemic clearance and toxicity, have been observed for currently available drug delivery systems (DDSs). The use of natural and artificial extracellular vesicles (EVs) in drug delivery may help to solve the aforementioned problems faced by different DDSs. Due to their self-origin, small size, flexibility, the presence of multiple adhesive molecules on their surfaces as well as their function as biomolecules carriers, EVs are the perfect candidates for DDSs. Currently, several drug delivery systems based on EVs have been proposed. While the great potential of these particles in targeted drug delivery has been recognized in cancer, hepatitis C, neurodegenerative diseases, inflammatory states etc., this field is still in the early stage of development. Unfortunately, the use of EVs from natural sources (cell cultures, body fluids) results in numerous problems in terms of the heterogeneity of isolated vesicle population as well as the method of isolation thereof, which may influence vesicle composition and properties. Therefore, there is a significant need for the synthesis of artificial EV-based DDSs under strictly controlled laboratory conditions and from well-defined biomolecules (proteins and lipids). Vesicle-mimetic delivery systems, characterized by properties similar to natural EVs, will bring new opportunities to study the mechanisms of DDS internalization and their biological activity after delivering their cargo to a target cell.

Funder

Jagiellonian University in Kraków

National Science Centre

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3