Methotrexate Disposition in Pediatric Patients with Acute Lymphoblastic Leukemia: What Have We Learnt From the Genetic Variants of Drug Transporters

Author:

Hu Ya-Hui1,Zhou Lin2,Wang Shan-Shan1,Jing Xia1,Guo Hong-Li1,Sun Fang1,Zhang Yong1,Chen Feng1,Xu Jing1,Ji Xing1

Affiliation:

1. Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China

2. State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, China

Abstract

Background: Methotrexate (MTX) is one of the leading chemotherapeutic agents with the bestdemonstrated efficacies against childhood acute lymphoblastic leukemia (ALL). Due to the narrow therapeutic range, significant inter- and intra-patient variabilities of MTX, non-effectiveness and/or toxicity occur abruptly to cause chemotherapeutic interruption or discontinuation. The relationship between clinical outcome and the systemic concentration of MTX has been well established, making the monitoring of plasma MTX levels critical in the treatment of ALL. Besides metabolizing enzymes, multiple transporters are also involved in determining the intracellular drug levels. In this mini-review, we focused on the genetic polymorphisms of MTX-disposition related transporters and the potential association between the discussed genetic variants and MTX pharmacokinetics, efficacy, and toxicity in the context of MTX treatment. Methods: We searched PubMed for citations published in English using the terms “methotrexate”, “transporter”, “acute lymphoblastic leukemia”, “polymorphisms”, and “therapeutic drug monitoring”. The retrieval papers were critically reviewed and summarized according to the aims of this mini-review. Results: Solute carrier (SLC) transporters (SLC19A1, SLCO1A2, SLCO1B1, and SLC22A8) and ATP-binding cassette (ABC) transporters (ABCB1, ABCC2, ABCC3, ABCC4, ABCC5, and ABCG2) mediate MTX disposition. Of note, the influences of polymorphisms of SLC19A1, SLCO1B1 and ABCB1 genes on the clinical outcome of MTX have been extensively studied. Conclusion: Overall, the data critically reviewed in this mini-review article confirmed that polymorphisms in the genes encoding SLC and ABC transporters confer higher sensitivity to altered plasma levels, MTX-induced toxicity, and therapeutic response in pediatric patients with ALL. Pre-emptive determination may be helpful in individualizing treatment.

Funder

Science and Technology Development Foundation of Nanjing Medical University

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3