Affiliation:
1. Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
Abstract
Background:
Tissue engineering (TE) is a promising solution for orthopaedic diseases such as bone or
cartilage defects and bone metastasis. Cell culture in vitro and scaffold fabrication are two main parts of TE, but
these two methods both have their own limitations. The static cell culture medium is unable to achieve multiple
cell incubation or offer an optimal microenvironment for cells, while regularly arranged structures are unavailable
in traditional cell-laden scaffolds, which results in low biocompatibility. To solve these problems, microfluidic
techniques are combined with TE. By providing 3-D networks and interstitial fluid flows, microfluidic platforms
manage to maintain phenotype and viability of osteocytic or chondrocytic cells, and the precise manipulation of
liquid, gel and air flows in microfluidic devices leads to the highly organized construction of scaffolds.
Methods:
In this review, we focus on the recent advances of microfluidic techniques applied in the field of tissue
engineering, especially in orthropaedics. An extensive literature search was done using PubMed. The introduction
describes the properties of microfluidics and how it exploits the advantages to the full in the aspects of TE. Then
we discuss the application of microfluidics on the cultivation of osteocytic cells and chondrocytes, and other
extended researches carried out on this platform. The following section focuses on the fabrication of highly organized
scaffolds and other biomaterials produced by microfluidic devices. Finally, the incubation and studying of
bone metastasis models in microfluidic platforms are discussed.
Conclusion:
The combination of microfluidics and tissue engineering shows great potentials in the osteocytic cell
culture and scaffold fabrication. Though there are several problems that still require further exploration, the future
of microfluidics in TE is promising.
Funder
Shanghai Municipal Education
National Natural Science Foundation
Publisher
Bentham Science Publishers Ltd.
Subject
Drug Discovery,Pharmacology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献